Heron's Formula and Ptolemy's Theorem

Open access

Heron's Formula and Ptolemy's Theorem

The goal of this article is to formalize some theorems that are in the [17] on the web. These are elementary theorems included in every handbook of Euclidean geometry and trigonometry: the law of cosines, the Heron's formula, the isosceles triangle theorem, the intersecting chords theorem and the Ptolemy's theorem.

MML identifier: EUCLID 6, version: 7.8.09 4.97.1001

[1] Kanchun and Yatsuka Nakamura. The inner product of finite sequences and of points of n-dimensional topological space. Formalized Mathematics, 11(2):179-183, 2003.

[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481-485, 1991.

[4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.

[5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

[6] Wenpai Chang, Yatsuka Nakamura, and Piotr Rudnicki. Inner products and angles of complex numbers. Formalized Mathematics, 11(3):275-280, 2003.

[7] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.

[8] Agata Darmochwał and Yatsuka Nakamura. The topological space ε2/T. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.

[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.

[10] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.

[11] Akihiro Kubo and Yatsuka Nakamura. Angle and triangle in Euclidian topological space. Formalized Mathematics, 11(3):281-287, 2003.

[12] Yatsuka Nakamura. General Fashoda meet theorem for unit circle and square. Formalized Mathematics, 11(3):213-224, 2003.

[13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.

[14] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

[15] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

[16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[17] Freek Wiedijk. Formalizing 100 theorems. http://www.cs.ru.nl/freek/100

[18] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

Formalized Mathematics

(a computer assisted approach)

Journal Information


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Target Group

researchers in the fields of formal methods and computer-checked mathematics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 26 26 5
PDF Downloads 5 5 1