Linear Congruence Relation and Complete Residue Systems

Open access

Linear Congruence Relation and Complete Residue Systems

In this paper, we defined the congruence relation and proved its fundamental properties on the base of some useful theorems. Then we proved the existence of solution and the number of incongruent solution to a linear congruence and the linear congruent equation class, in particular, we proved the Chinese Remainder Theorem. Finally, we defined the complete residue system and proved its fundamental properties.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics 1(1):107-114 1990.

  • [6] Józef Białas. Some properties of the intervals. Formalized Mathematics 5(1):21-26 1996.

  • [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics 1(1):55-65 1990.

  • [8] Czesław Byliński. Partial functions. Formalized Mathematics 1(2):357-367 1990.

  • [9] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics 1(4):661-668 1990.

  • [10] Agata Darmochwał. Finite sets. Formalized Mathematics 1(1):165-167 1990.

  • [11] Noboru Endou Katsumi Wasaki and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics 9(3):495-500 2001.

  • [12] Noboru Endou Katsumi Wasaki and Yasunari Shidama. Scalar multiple of Riemann definite integral. Formalized Mathematics 9(1):191-196 2001.

  • [13] Yoshinori Fujisawa and Yasushi Fuwa. The Euler's function. Formalized Mathematics 6(4):549-551 1997.

  • [14] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics 1(1):35-40 1990.

  • [15] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics 6(4):573-577 1997.

  • [16] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics 1(5):887-890 1990.

  • [17] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics 1(5):829-832 1990.

  • [18] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics 4(1):83-86 1993.

  • [19] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics 1(3):441-444 1990.

  • [20] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.

  • [21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics 1(1):9-11 1990.

  • [22] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics 11(4):341-347 2003.

  • [1] Grzegorz Bancerek. Arithmetic of non-negative rational numbers. To appear in Formalized Mathematics.

  • [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics 1(2):377-382 1990.

  • [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics 1(1):91-96 1990.

  • [4] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics 4(1):77-82 1993.

  • [23] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics 1(3):445-449 1990.

  • [24] Michał J. Trybulec. Integers. Formalized Mathematics 1(3):501-505 1990.

  • [25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics 1(1):67-71 1990.

  • [26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics 1(1):73-83 1990.

  • [27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics 1(1):181-186 1990.

  • [28] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics 1(1):85-89 1990.

Search
Journal information
Impact Factor


CiteScore 2018: 0.42

SCImago Journal Rank (SJR) 2018: 0.111
Source Normalized Impact per Paper (SNIP) 2018: 0.169

Target audience:

researchers in the fields of formal methods and computer-checked mathematics

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 174 63 2
PDF Downloads 82 41 0