Integral of Measurable Function1

Open access

Integral of Measurable Function1

In this paper we construct integral of measurable function.

Keywords:
References
  • [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

  • [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

  • [3] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.

  • [4] Józef Białcs. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.

  • [5] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.

  • [6] Józef Białas. Some properties of the intervals. Formalized Mathematics, 5(1):21-26, 1996.

  • [7] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.

  • [8] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.

  • [9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

  • [10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

  • [11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

  • [12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

  • [13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

  • [14] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491-494, 2001.

  • [15] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.

  • [16] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. The measurability of extended real valued functions. Formalized Mathematics, 9(3):525-529, 2001.

  • [17] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Some properties of extended real numbers operations: abs, min and max. Formalized Mathematics, 9(3):511-516, 2001.

  • [18] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.

  • [19] Grigory E. Ivanov. Definition of convex function and Jensen's inequality. Formalized Mathematics, 11(4):349-354, 2003.

  • [20] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990.

  • [21] Jarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the set of real numbers. Formalized Mathematics, 3(2):279-288, 1992.

  • [22] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.

  • [23] Andrzej Nedzusiak. Probability. Formalized Mathematics, 1(4):745-749, 1990.

  • [24] Andrzej Nedzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.

  • [25] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17-21, 1992.

  • [26] Yasunari Shidama and Noboru Endou. Lebesgue integral of simple valued function. Formalized Mathematics, 13(1):67-71, 2005.

  • [27] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.

  • [28] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.

  • [29] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

  • [30] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.

  • [31] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

  • [32] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

  • [33] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

  • [34] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Formalized Mathematics

(a computer assisted approach)

Journal Information


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Target Group

researchers in the fields of formal methods and computer-checked mathematics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 15 15 11
PDF Downloads 4 4 2