Several Differentiation Formulas of Special Functions. Part III

Open access

Several Differentiation Formulas of Special Functions. Part III

In this article, we give several differentiation formulas of special and composite functions including trigonometric function, inverse trigonometric function, polynomial function and logarithmic function.

Keywords:
References
  • [1] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

  • [2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.

  • [3] Artur Korniłowicz and Yasunari Shidama. Inverse trigonometric functions arcsin and arccos. Formalized Mathematics, 13(1):73-79, 2005.

  • [4] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.

  • [5] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.

  • [6] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.

  • [7] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125-130, 1991.

  • [8] Konrad Raczkowski and Andrzej Nedzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.

  • [9] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.

  • [10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.

  • [11] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.

  • [12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.

  • [13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

  • [14] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

  • [15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

  • [16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

  • [17] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

Formalized Mathematics

(a computer assisted approach)

Journal Information


SCImago Journal Rank (SJR) 2016: 0.207
Source Normalized Impact per Paper (SNIP) 2016: 0.315

Target Group

researchers in the fields of formal methods and computer-checked mathematics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3 3 3
PDF Downloads 1 1 1