Effect of climate and air pollution on radial growth of mixed forests: Abies alba Mill. vs. Picea abies (L.) Karst.

Abstract

Norway spruce (Picea abies [L.] Karst.) and silver fir (Abies alba Mill.) are main tree species of Central Europe that are currently highly vulnerable in times of global climate change. The research deals with the effect of climate and air pollution on radial growth of silver fir and Norway spruce in mixed age-varied (56 – 146 years) forests in the Jeseníky Protected Landscape Area, the Czech Republic. The objectives were to evaluate biodiversity, structure and production, specifically interaction of radial growth of fir and spruce to air pollution (SO2, NOX, tropospheric ozone) and climatic factors (precipitation, air temperature). Concentration of SO2 and NOX had negative effect on radial growth of fir, while radial growth of spruce was more negatively influenced by tropospheric ozone. Fir showed higher variability in radial growth and was more sensitive to climatic factors compared to spruce. On the other hand, fir was relatively adaptable tree species that regenerated very well when the pressure of stress factors subsided (air pollution load, Caucasian bark beetle, frost damage). Low temperature was a limiting factor of radial growth in the study mountainous area, especially for fir. Fir was significantly sensitive to late frost, respectively, spruce to winter desiccation and spring droughts with synergism of air pollution load. Generally, older forest stands were more negatively influenced by air pollution load and climatic extremes compared to young trees.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Altman, J., Fibich, P., Santruckova, H., Dolezal, J., Stepanek, P., Kopacek, J. et al., 2017: Environmental factors exert strong control over the climate-growth relationships of Picea abies in Central Europe. Science of the Total Environment, 609:506–516.

  • Anderegg, W. R., Kane, J. M., Anderegg, L. D., 2013: Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 3:30–36.

  • Auders, A. G., Spicer, D. P., 2012: Royal Horticultural Society Encyclopedia of Conifers: A Comprehensive Guide to Cultivars and Species. Royal Horticultural Society, 1507 p.

  • Augusto, L., Ranger, J., Binkley, D., Rothe, A., 2002: Impact of several common tree species of European temperate forests on soil fertility. Annal of Forest Sciences, 59:233–253.

  • Battipaglia, G., M. Saurer, P. Cherubini, Siegwolf R. T. W., Cotrufo M. F., 2009: Tree rings indicate differ-entdrought resistance of a native (Abies alba Mil.) and a non-native (Picea abies [L.] Karst.) species cooccurring at a drysite in Southern Italy. Forest Ecology and Management, 257:820–828.

  • Bernadzki, E., 2008: Jodła pospolita – ekologia, zagrożenia, hodowla. PWRiL, Warszawa, p. 7–9.

  • Bhuyan, U., Zang, C., Menzel, A., 2017: Different responses of multispecies tree ring growth to various drought indices across Europe. Dendrochronologia, 44:1–8.

  • Binkley D., Fisher, R. F., 2013: Ecology and Management of Forest Soils. 4th Edn. Chichester: Wiley-Blackwell, 347 p.

  • Biondi, F., Waikul, K., 2004: Dendroclim 2002: AC++ program for statistical calibration of climate signals in tree ring chronologie. Computers & Geosciences, 30:303–311.

  • Blaschke, H., 1982: Schadbild und Ätiologie des Tannensterbens: III. Das Vorkommen einer Phytophthora-Fäule an Feinwurzeln der Weißtanne (Abies alba Mill.). European Journal of Forest Pathology, 12:232–238.

  • Block, J., 1997: Disposition rheinland-pfälzischer Waldbodensubstrate gegenüber Versauerung. In: Ministerium für Umwelt und Forsten Rheinland-Pfalz: Waldschäden. Boden- und Wasserversauerung durch Luftschadstoffe in Rheinland-Pfalz, Mainz, p. 16–27.

  • Boettger, T., Haupt, M., Friedrich, M., Waterhouse, J. S., 2014: Reduced climate sensitivity of carbon, oxygen and hydrogen stable isotope ratios in tree-ring celulose of silver fir (Abies alba Mill.) influenced by background SO2 in Franconia (Germany, Central Europe). Environmental Pollution, 185:281–294.

  • Bolte, A., Ammer, C., Löf, M.,Madsen, P., Nabuurs, G.-J., Schall, P. et al., 2009: Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scandinavian Journal of Forest Research, 24:473–482.

  • Bolte, A., Hilbrig, L., Grundmann, B., Kampf, F., Brunet, J., Roloff, A., 2010: Climatechange impacts on stand structure and competitive interactions in a southern-Swedish spruce-beech forest. European Journal of Forest Research, 129:261–276.

  • Bonan, G. B., 2008: Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320:1444–1449.

  • Bontemps, J. D., Hervé, J. C., Leban, J. M., Dhôte, J. F., 2011: Nitrogen footprint in a long-term observation of forest growth over the twentieth century. Trees – Structural and Function, 25:237–251.

  • Bošeľa, M., Petráš, R., Sitková, Z., Priwitzer, T., Pajtík, J., Hlavatá, H. et al., 2014: Possible causes of the recent rapid increase in the radial increment of silver fir in the Western Carpathians. Environmental Pollution, 184:211–221.

  • Bošeľa, M., Lukac, M., Castagneri, D., Sedmák, R., Biber, P., Carrer, M. et al., 2018: Contrasting effects of environmental change on the radial growth of cooccurring beech and fir trees across Europe. Science of the Total Environment, 615:1460-1469.

  • Brill, H., Bock, E., Bauch, J., 1981: Über die Bedeutung von Mikroorganismen im Holz von Abies alba Mill. für das Tannensterben. Forstwissenschaftliches Centralblatt, 100:195–206.

  • Büntgen, U., Tegel, W., Kaplan, J. O., Schaub, M., Hagedorn, F., Bürgi, M. et al., 2014: Placing unprecedented recent fir growth in a European-wide and Holocene-long context. Frontiers in Ecology and the Environment, 12:100–106.

  • Bunn, A., Mikko, K., 2018: Chronology Building in dplR. CRAN - R Project, 13 p.

  • Cailleret, M., Davi, H., 2010: Effects of climate on diameter growth of co-occurring Fagus sylvatica and Abies alba along an altitudinal gradient. Trees, 25:265–276.

  • Carrer, M., Motta, R., Nola, P., 2010: Significant mean and extreme climate sensitivity of Norway spruce and silver fir at mid-elevation mesic sites in the Alps. PLoS One, 7: e50755.

  • Coumou, D., Rahmstorf, S., 2012: A decade of weather extremes. Nature Climate Change, 2:491–496.

  • Cramer, H. H., 1984: On the Predisposition to Disorders of Middle European Forests. In: Pantzenschutz-Nachrichten Bayer, 37, p. 97–207.

  • Cukor, J., Vacek, Z., Linda, R., Vacek, S., Marada, P., Šimůnek, V. et al., 2019a: Effects of bark stripping on timber production and structure of Norway spruce forests in relation to climatic factors. Forests, 10:320.

  • Cukor, J., Vacek, Z., Linda, R., Sharma, R. P., Vacek, S., 2019b: Afforested farmland vs. forestland: Effects of bark stripping by Cervus elaphus and climate on production potential and structure of Picea abies forests. PloS one, 14:e0221082.

  • Crookston, N. L., Stage, A. R., 1999: Percent canopy cover and stand structure statistics from the Forest Vegetation Simulator. Gen. Tech. Rep. RMRSGTR-24. Ogden, UT. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 11 p.

  • Čada, V., Svoboda, M., Janda, P., 2013: Dendrochrono-logical reconstruction of the disturbance history and past development of the mountain Norway spruce in the Bohemian Forest, central Europe. Forest Ecology and Management, 295:59–68.

  • Čater, M., Diaci, J., 2017: Divergent response of European beech, silver fir and Norway spruce advance regeneration to increased light levels following natural disturbance. Forest Ecology and Management, 399:206–212.

  • Dănescu, A., Albrecht, A. T., Bauhus, J., 2016: Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia, 182:319–333.

  • Davis, M. B., Shaw, R. G., Etterson, J. R., 2005: Evolutionary responses to a changing climate. Ecology, 86:1704–1714.

  • De Vries, W., Reinds, G. J., Gundersen, P., Sterba, H., 2006: The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Global Change Biology, 12:1151–1173.

  • del Río, M., Schütze, G., Pretzsch, H., 2014: Temporal variation of competition and facilitation in mixed species forests in Central Europe. Plant Biology, 16:166–176.

  • Di Filippo, A., Biondi, F., Maugeri, M., Schirone, B., Piovesan, G., 2012: Bioclimate andgrowth history affect beech lifespan in the Italian Alps and Apennines. Global Change Biology, 18:960–972.

  • Diaci, J., 2011: Silver fir decline in mixed old-growth forests in Slovenia: an interaction of air pollution, changing forest matrix and climate. In: Moldoveanu, A. (ed.): Air Pollution – New Developments. InTech, p. 263–274.

  • Dittmar, C., Zech, W., Elling, W., 2003: Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe – a dendroecological study. Forest Ecology and Management, 173:63–78.

  • EEA, 2006: European forest types: categories and types for sustainable forest management reporting and policy. EEA Technical Report No 9/2006 (Copenhagen), 114 p.

  • Elling, W., Dittmar, C., Pfaffelmoser, K., Rötzer, T., 2009: Dendroecological assessment of the complex causes of decline and recovery of the growth of silver fir (Abies alba Mill.) in Southern Germany. Forest Ecology and Management, 257:1175–1187.

  • Elliott, K. J., Miniat, C. F., Pederson, N., Laseter, S. H., 2015: Forest tree growth response to hydroclimate variability in the southern Appalachians. Global Change Biology, 21:4627–4641.

  • Fabrika, M., Ďurský, J., 2005: Stromové rastové simulá-tory. Zvolen, EFRA, 112 p.

  • Farjon, A., Filer, D., 2013: An Atlas of the World’s Conifers: An Analysis of their Distribution, Biogeography, Diversity and Conservation Status, Brill, 524 p.

  • Ferretti, M., Innes, J. L., Jalkanen, R., Saurer, M., Schäffer, J., Spiecker, H. et al., 2002: Airpollution and environmental chemistry – what role fortree-ring studies? Dendrochronologia, 20:159–174.

  • Forrester, D. I., Kohnle, U., Albrecht, A. T., Bauhus, J., 2013: Complementarity in mixed-species stands of Abies alba and Picea abies varies with climate, site quality and stand density. Forest Ecology and Management, 304:233–242.

  • Forrester, D. I., Albrecht, A. T., 2014: Light absorption and light-use efficiency in mixtures of Abies alba and Picea abies along a productivity gradient. Forest Ecology and Management, 328:94–102.

  • Frank, D., Reichstein, M., Bahn, M., Thonicke, K., Frank, D., Mahecha, M. D. et al., 2015: Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Global Change Biology, 21:2861–2880.

  • Friedrichs, D. A., Trouet, V., Büntgen, U., Frank, D. C., Esper, J., Neuwirth, B. et al., 2009: Species-specific climate sensitivity of tree growth in Central-West Germany. Trees, 23:729–739.

  • Fritts, H. C., 1976: Tree Ring and Climate. Academic Press, New York, 576 p.

  • Füldner, K., 1995: Strukturbeschreibung in Mischbeständen. Forstarchiv, 66:235–606.

  • Gao, X., Giorgi, F., 2008: Increased aridity in the Mediterranean region under green-house gas forcing estimated from high resolution regional climate projections. Global Planetary Change, 62:195–209.

  • Gazol, A., Camarero, J. J., Gutierrez, E., Popa, I., Andreu-Hayles, L., Motta, R. et al., 2015: Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. Journal of Biogeography, 42:1150–1162.

  • Gazol, A., Camarero, J. J., Anderegg, W. R. L., Vicente-Serrano, S. M., 2016: Impacts ofdroughts on the growth resilience of Northern Hemisphere forests. Global Ecolology and Biogeography, 26:166–176.

  • Gentilesca, T., Todaro, L., 2008: Crescita radiale e risposte climatiche dell’abete bianco (Abies alba Mill.) in Basilicata. Forest@-Journal of Silviculture and Forest Ecology, 5:47–56.

  • Godek, M., Sobik, M., Błaś, M., Polkowska, Ž., Owczarek, P., Bokwa, A., 2015: Tree rings as an indicatorof atmospheric pollutant deposition to subalpinespruce forests in the Sudetes (Southern Poland). Atmospheric Research, 151:259–268.

  • Gömöry, D., Longauer, R., Liepelt, S., Ballian, D., Brus, R., Kraigher, H. et al., 2004: Variation patterns of mitochondrial DNA of Abies alba Mill. in suture zones of postglacial migration in Europe. Acta Societatis Botanicorum Poloniae, 73:203–206.

  • Gričar, J., Čufar, K., 2008: Seasonal dynamics of phloem and xylem formation in silver fir and Norway spruce as affected by drought. Russian Journal of Plant Physiologist, 55:538–543.

  • Halaj, J. et al., 1987: Rastové tabuľky hlavných drevín ČSSR. Bratislava, Príroda, 361 p.

  • Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J., Zimmermann, N. E., 2013: Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3:203–207.

  • Härdtle, W., Niemeyer, T., Assmann, T., Baiboks, S., Fichtner, A., Friedrich, U. et al., 2013: Long-term trends in tree-ring width and isotope signatures (δ13 C, δ15 N) of Fagus sylvatica L. on soils with contrasting water supply. Ecosystems, 16:1413–1428.

  • Harrington, C. A., Gould, P. J., St. Clair, J. B., 2010: Modeling the effects of winter environment on dormancy release of Douglas-fir. Forest Ecology and Management, 259:798–808.

  • Hartmann, H., Adams, H. D., Anderegg, W. R., Jansen, S., Zeppel, M. J., 2015: Research frontiers in drought-induced tree mortality: crossing scales and disciplines. New Phytologist, 205:965–969.

  • Hauck, M., Zimmermann, J., Jacob, M., Dulamsuren, C., Bade, C., Ahrends, B. et al., 2012: Rapid recovery of stem increment in Norway spruce at reduced SO2 levels in the Harz Mountains, Germany. Environmental Pollution, 164:132–141.

  • Hejný, S., Slavík, B. (eds.), 1997: Květena České republiky. 1. díl, Praha, Academia, 557 p.

  • Hernández, L., Camarero, J. J., Gil-Peregrín, E., Sánchez, M. Á. S., Cañellas, I., Montes, F., 2019: Biotic factors and increasing aridity shape the altitudinal shifts of marginal Pyrenean silver fir populations in Europe. Forest Ecology and Management, 432:558-567.

  • Huber, M. O., Sterba, H., Bernhard, L., 2014: Site conditions and definition of compositional proportion modify mixture effects in Picea abiesAbies alba stands. Canadian Journal of Forest Research, 44:1281–1291.

  • Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R. et al., 2012: Global convergence in the vulnerability of forests to drought. Nature, 491:752–755.

  • Jaehne, S. C., Dohrenbusch, A., 1997: Ein Verfahren zur Beurteilung der Bestandesdiversität. Forstwissenschaftliches Centralblatt, 116:333–345.

  • Klein, T., 2014: The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Functional Ecology, 28: 1313–1320.

  • Knibbe, B., 2007: PAST4: personal analysis system for treering research, Version 4.2. SCIEM, Vienna.

  • Kogan, F., Adamenko, T., Guo, W., 2013: Global and regional drought dynamics in the climate warming era. Remote Sensing Letters, 4:364–372.

  • Konôpková, A., Kurjak, D., Kmeť, J., Klumpp, R., Longauer, R., Ditmarová, L. et al., 2018: Differences in photochemistry and response to heat stress between silver fir (Abies alba Mill.) provenances. Trees – Structure and Function, 32:73-86.

  • Koprowski, M., 2013: Spatial distribution of introduced Norway spruce growth in lowland Poland: The influence ofchanging climate and extreme weather events. QuaternaryInternational, 283:139–146.

  • Korpeľ, S., Paule, L., Laffers, A., 1982: Genetics and breeding of the silver fir (Abies alba Mill.). Annal Forestry, 9:151–184.

  • Král, J., Vacek, S., Vacek, Z., Putalová, T., Bulušek, D., Štefančík, I., 2015: Structure, development and health status of spruce forests affected by air pollution in the western Krkonoše Mts. in 1979–2014. Lesnícký časopis – Forestry Journal, 61:175–187.

  • Králíček, I., Vacek, Z., Vacek, S., Remeš, J., Bulušek, D., Král, J. et al., 2017: Dynamics and structure of mountain autochthonous spruce-beech forests: impact of hilltop phenomenon, air pollutants and climate. Dendrobiology, 77:119–137.

  • Larsen, J. B., 1986: Das Tannensterben: eine neue Hypothese zur Klärung des Hintergrundes dieser rätselhaften Kompexkrankheit der Weisstanne (Abies alba Mill.). Forstwissenschaftliches Centralblatt, 105:381–396.

  • Lebourgeois, F., Rathgeber, C. B. K., Ulrich, E., 2010: Sensitivity of French temperate coniferous forests to climate variability and extreme events (Abies alba, Picea abies and Pinus sylvestris). Journal of Growing Science, 21:364–376.

  • Lenoir, et al., 2009: Differences between tree species seedling and adult altitudinal distribution in mountain forests during the recent warm period (1986-2006). Ecography, 32:765–777.

  • Margalef, R., 1958: Information theory in ecology. General Systematics, 3:36–71.

  • McDowell, N. G., Allen, C. D., 2015: Darcy’s law predicts widespread forest mortality under climate warming. Nature Climate Change, 5:669–672.

  • Metz, J., Annighöfer, P., Schall, P., Zimmermann, J., Kahl, T., Schulze, E.D. et al., 2016: Site-adapted admixed tree species reduce drought susceptibility of mature European beech. Global Change Biology, 22:903–920.

  • Meunier, C. L., Gundale, M. J., Sanchez, I. S., Liess, A., 2016: Impact of nitrogen deposition on forest and lake food webs in nitrogen-limited environments. Global Change Biology, 22:164–179.

  • Mina, M., del Río, M., Huber, M. O., Thürig, E., Rohner, B., 2018: The symmetry of competitive interactions in mixed Norway spruce, silver fir and European beech forests. Journal of Growing Science, 29:775–787.

  • Mrkva, R., 1994: Korovnice kavkazska (Dreyfusianordmannianae Eckstein), obrana proti ní a její podíl na ústupu jedle. Lesnictvi – Forestry, 40:361–370.

  • Musil, I., Hamerník, J., 2007: Jehličnaté dřeviny. Přehled nahosemenných i výtrusných dřevin, Lesnická dendrologie 1, Praha, Academia, 352 p.

  • O’Brien, M. J., Leuzinger, S., Philipson, C. D., Tay, J., Hector, A., 2014: Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nature Climate Change, 4:710.

  • Petráš, R., Pajtík, J., 1991: Sústava česko-slovenských objemových tabuliek drevín. Lesnícky časopis, 37:49–56.

  • Pielou, E. C., 1975: Ecological diversity. New York: Wiley, USA, 165 p.

  • Pretzsch, H., 2006: Wissen nutzbar machen für das Management von Waldökosystemen. Allgemeine Forstzeitschrift/Der Wald, 61:1158–1159.

  • Pretzsch, H., Schütze, G., Uhl, E., 2013: Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biology,15:483–495.

  • Pretzsch, H., Rötzer, T., Matyssek, R., Grams, T. E. E., Häberle, K. H., Pritsch, K. et al., 2014: Mixed Norway spruce (Picea abies [L.] Karst.) and European beech Fagus sylvatica [L.] stands under drought: from reaction pattern to mechanism. Trees, 28:1305–1321.

  • Putalová, T., Vacek, Z., Vacek, S., Štefančík, I., Bulušek, D., Král, J., 2019: Tree-ring widths as an indicator of air pollution stress and climate conditions in different Norway spruce forest stands in the Krkonoše Mts. Central European Forestry Journal, 65:21–33.

  • Reineke, L. H., 1933: Perfecting a stand-density index for even-aged forests. Journal of Agricultural Research, 46:627–638.

  • Ripullone, F., Borghetti, M., Raddi, S., Vicinelli, E., Baraldi, R., Guerrieri et al., 2009: Physiological and structural changes in response toaltered precipitation regimes in a Mediterranean macchia ecosystem. Trees, 23:823–834.

  • Rita, A., Gentilesca, T., Ripullone, F., Todaro, L., Borghetti, M., 2014: Differential climate–growth relationships in Abies alba Mill. and Fagus sylvatica L. in Mediterranean mountain forests. Dendrochronologia, 32:220–229.

  • Rolland, C., Michalet, R., Desplanque, C., Petetin, A., Aimé, S., 1999: Ecological requirements of Abies alba in the French alps derived from dendro-ecological analysis. Journal of Growing Science, 10:297–306.

  • Roman, D. T., Novick, K. A., Brzostek, E. R., Dragoni, D., Rahman, F., Phillips, R. P., 2015: The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Oecologia, 179:641.

  • Rötzer, T., Biber, P., Moser, A., Schäfer, C., Pretzsch, H., 2017a: Stem and root diameter growth of European beech and Norway spruce under extreme drought. Forest Ecology and Management, 406:184–195.

  • Rötzer, T., Häberle, K. H., Kallenbach, C., Matyssek, R., Pretzsch, H., 2017b: Tree species and size drive water consumption of beech/spruce forests (Fagus sylvatica/Picea abies) – a simulation study highlighting growth under water limitation. Plant Soil, 418:337–356.

  • Sander, C., Eckstein, D., 2001: Foliation of spruce in the Giant Mts. and its coherence with growth and climate over the last 100 years. Annals of Forest Science, 58:155–164.

  • Sensuła, B., Wilczyński, S., Opała, M., 2015: Tree Growth and Climate Relationship: Dynamics of Scots Pine (Pinus sylvestris L.) Growing in the Near-Source Region of the Combined Heat and Power Plant During the Development of the Pro-Ecological Strategy in Poland. Water, Air, & Soil Pollution, 226:220.

  • Shannon, C. E., 1948: A mathematical theory of communications. Bell System Technical Journal, 27:379–423.

  • Schweingruber, F. H., 1996: Tree Rings and Environment Dendroecology. Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, 609 p.

  • Sohar, K., Altman, J., Lehečková, E., Doležal, J., 2017: Growth–climate relationships of Himalayan conifers along elevational and latitudinal gradients. International Journal of Climatology, 37:2593–2605.

  • Swidrak, I., Gruber, A., Oberhuber, W., 2014: Xylem and phloem phenology in co-occurring conifers exposed to drought. Trees, 28:1161–1171.

  • Šmilauer, P., Lepš, J., 2014: Multivariate analysis of ecological data using CANOCO 5. Cambridge university press, 361 p.

  • Toïgo, M., Vallet, P., Perot, T., Bontemps, J.-D., Piedallu, C., Courbaud, B., 2015: Overyielding in mixed forests decreases with site productivity. Journal of Ecology, 103:502–512.

  • Ulrich, B., 1981: Eine ökosystemare Hypothese über die Ursachen des Tannensterbens (Abies alba Mill.). Forstwissenschaftliches Centralblatt, 100:228–236.

  • Úradníček, L., Maděra, P., Kolibáčová, S., Koblížek, J., Šefl, J., 2001: Dřeviny České republiky. Písek, Matice lesnická, 333 p.

  • Úradníček, L., Madera, P., Tichá, S., Koblížek, J., 2009: Dřeviny České Republiky. Lesnická práce, Kostelec nad Černými lesy, 367 p.

  • Usbeck, T., Wohlgemuth, T., Dobbertin, M., Pfister, C., Bürgi, A., Rebetez, M., 2010: Increasing storm damage to forests in Switzerland from 1858 to 2007. Agricultural and Forest Meteorology, 150:47–55.

  • Vacek, S., Hůnová, I., Vacek, Z., Hejcmanová, P., Podrázský, V., Král, J. et al., 2015: Effects of air pollution and climatic factors on Norway spruce forests in the Orlické hory Mts. (Czech Republic), 1979–2014. European Journal of Forest Research, 134:1127–1142.

  • Vacek, S., Černý, T., Vacek, Z., Podrázský, V., Mikeska, M., Králíček, I., 2017: Long-term changes in vegetation and site conditions in beech and spruce forests of lower mountain ranges of Central Europe. Forest Ecology and Management, 398:75–90.

  • Vacek, S., Vacek, Z., Kalousková, I., Cukor, J., Bílek, L., Moser, W.K. et al., 2018. Sycamore maple (Acer pseudoplatanus L.) stands on former agricultural land in the Sudetes-evaluation of ecological value and production potential. Dendrobiology, 79:61–76.

  • Vacek, S., Vacek, Z., Ulbrichová, I., Remeš, J., Podrázský, V., Vach, M. et al., 2019: The Effects of Fertilization on the Health Status, Nutrition and Growth of Norway Spruce Forests with Yellowing Symptoms. Scandinavian Journal of Forest Research, 34:1–49.

  • Vacek, Z., Vacek, S., Slanař, J., Bílek, L., Bulušek, D., Štefančík, I. et al., 2019: Adaption of Norway spruce and European beech forests under climate change: from resistance to close-to-nature silviculture. Central European Forestry Journal, 65:129–144.

  • Viet, H. D., Kwak, J. H., Lee, K. S., Lim, S. S., Matsushima, M., Chang, S. X. et al., 2013: Foliar chemistry and tree ring δ 13 C of Pinus densiflora in relation to tree growth along a soil pH gradient. Plant and Soil, 363:101–112.

  • Vitali, V., Büntgen, U., Bauhus, J., 2017: Silver fir and Douglas fir are more tolerant to extréme droughts than Norway spruce in south-western Germany. Global change biology, 23:5108–5119.

  • Vitali, V., Büntgen, U., Bauhus, J., 2018: Seasonality matters – The effects of past and projected seasonal climate change on the growth of native and exotic conifer species in Central Europe. Dendrochronologia, 48:1–9.

  • Wentzel, K. F., 1980: Weissitanne = immissionsempfindlichste einheimische Baumart. Allgemeine Forstzeitschrift, 35:373–374.

  • Werner, B., Spranger, T. (ed.), 1996: Manual on Methodologies and Criteria for Mapping Critical Levels/Loads and Geographical Areas where they are Exceeded, UN ECE CLRTAP. Berlin, UBA, 204 p.

  • Wilczyński, S., 2006: The variation of tree−ring widths of Scots pine (Pinus sylvestris L.) affected by air pollution. European Journal of Forest Research, 125:213–219.

  • Yamaguchi, D. K., 1991: A simple method for cross-dating increment cores from living trees. Canadian Journal Forest Research, 21:414–416.

OPEN ACCESS

Journal + Issues

Search