Adaption of Norway spruce and European beech forests under climate change: from resistance to close-to-nature silviculture

Open access

Abstract

In time of climate change, close-to-nature silviculture is growing in importance as a tool for future forest management. The paper study the tree layer and natural regeneration of monospecific Norway spruce (Picea abies [L.] Karst.), trough mixed spruce-beech to dominant European beech (Fagus sylvatica L.) forests in Jizerské hory Mts., the Czech Republic. In the locality, shelterwood and selection system have been applied since 2000. The research objectives were to evaluate production parameters, structural diversity, species richness, natural regeneration dynamics and radial growth of individual tree species in relation to climatic factors and air pollution. The stand volume on permanent research plots amounted to 441 – 731 m3 ha−1 in initial stage of transformation. Natural regeneration showed high expansion of beech and decrease of spruce compared to mature tree species composition. Radial growth of spruce was in significant negative correlation with SO2 and NOX concentrations compared to no effect on beech increment. Moreover, spruce was more sensitive to significant years with extreme low radial growth. Beech was more stable in radial growth. Spruce was more resistant to air pollution and climatic stress in mixed stands. Low temperature was limiting factor of radial growth together with climate extremes (such as strong frosts and more frequent droughts) and biotic factors (bark beetle, beech scale). Close-to-nature management supporting admixed tree species should lead in future to diversification of stand structure toward higher species, spatial and age structure to mitigate negative effect of climatic change.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ambrož R. Vacek S. Vacek Z. Král J. Štefančík I. 2015: Current and simulated structure growth parameters and regeneration of beech forests with different game management in the Lány Game Enclosure. Central European Forestry Journal 61:78–88.

  • Ammer C. 1996: Impact of ungulates on structure and dynamics of natural regeneration of mixed mountain forests in the Bavarian Alps. Forest Ecology and Management 88:43–53.

  • Barbati A. Marchetti M. Chirici G. Corona P. 2014: European forest types and forest Europe SFM indicators: tools for monitoring progress on forest biodiversity conservation. Forest Ecology and Management 321:145–157.

  • Barbier S. Chevalier R. Loussot P. Bergès L. Gosselin F. 2009: Improving biodiversity indicators of sustainable forest management: Tree genus abundance rather than tree genus richness and dominance for understory vegetation in French lowland oak hornbeam forests. Forest Ecology and Management 258:176–186.

  • Barna M. Bošeľa M. 2015: Tree species diversity change in natural regeneration of a beech forest under different management. Forest Ecology and Management 342:93–102.

  • Bergeron Y. Harvey B. Leduc A. Gauthier S. 1999: Forest management guidelines based on natural disturbance dynamics: stand- and forest-level considerations. Forestry Chronicle 75:49–54.

  • Bernard M. Boulanger V. Dupouey J. L. Laurent L. Montpied P. Morin X. et al. 2017: Deer browsing promotes Norway spruce at the expense of silver fir in the forest regeneration phase. Forest Ecology and Management 400:269–277.

  • Bílek L. Remeš J. Podrázský V. Rozenbergar D. Diaci J. Zahradník D. 2014: Gap regeneration in near-natural European beech forest stands in Central Bohemia – the role of heterogeneity and micro-habitat factors. Dendrobiology 71:59–71.

  • Bílek L. Remeš J. Zahradník D. 2011: Managed versus unmanaged. Structure of beech forest stands” Fagus sylvatica L.” after 50 years of development Central Bohemian. Forest Systems 1:122–138.

  • Bílek L. Vacek S. Vacek Z. Remeš J. Král J. Bulušek D. Gallo J. 2016: How close to nature is close-to-nature pine silviculture? Journal of Forest Science 62:24–34.

  • Bilela S. Dounavi A. Fussi B. Konnert M. Holst J. Mayer H. et al. 2012: Natural regeneration of Fagus sylvatica L. adapts with maturation to warmer and drier microclimatic conditions. Forest Ecology and Management 275:60–67.

  • Bolte A. Czajkowski T. Kompa T. 2007: The northeastern distribution range of European beech – a review. Forestry 80:413–429.

  • Bolte A. Hilbrig L. Grundmann B. Kampf F. Brunet J. Roloff A. 2010: Climate change impacts on stand structure and competitive interactions in a southern Swedish spruce–beech forest. European Journal of Forest Research 129:261–276.

  • Bošeľa M. Štefančík I. Petráš R. Vacek S. 2016: The effects of climate warming on the growth of European beech forests depend critically on thinning strategy and site productivity. Agricultural and Forest Meteorology 222:21–31.

  • Briner S. Elkin C. Huber R. 2013: Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions. Journal of Environmental Management 129:414–422.

  • Bulušek D. Vacek Z. Vacek S. Král J. Bílek L. Králíček I. 2016: Spatial pattern of relict beech (Fagus sylvatica L.) forests in the Sudetes of the Czech Republic and Poland. Journal of Forest Science 62:293–305.

  • Butler K. F. Koontz T. M. 2005: Theory into practice: implementing ecosystem management objectives in the USDA Forest Service. Environmental Management 35:138–150.

  • Cardinall D. Hammond H. Holt R. Moore K. Beese B. Ruitenbeek J. et al. 2004: Ecosystem-Based Management Planning Handbook. Coast Information Team Victoria BC 80 p.

  • Chianucci F. Salvati L. Giannini T. Chiavetta U. Corona P. Cutini A. 2016: Long-term response to thinning in a beech (Fagus sylvatica L.) coppice stand under conversion to high forest in Central Italy. Silva Fennica 50:1549–1558.

  • Clark P. J. Evans F. C. 1954: Distance to nearest neighbour as a measure of spatial relationship in populations. Ecology 35:445–453.

  • Cukor J. Havránek F. Rohla J. Bukovjan K. 2017: Stanovení početnosti jelení zvěře v západní části Krušných hor. Zprávy lesnického výzkumu 62:288–295.

  • Cukor J. Vacek Z. Linda R. Vacek S. Marada P. Šimůnek V. Havránek F. 2019: Effects of bark stripping on timber production and structure of Norway spruce forests in relation to climatic factors Forests 10:320.

  • Drobyshev I. Niklassona M. Mazerolled M. J. Bergeron Y. 2014: Reconstruction of a 253-year long mast record of European beech reveals its association with large scale temperature variability and no long-term trend in mast frequencies. Agricultural and Forest Meteorology 192–193:9–17.

  • Dulamsuren C. Hauck M. Kopp G. Ruff M. Leuschner C. 2017: European beech responds to climate change with growth decline at lower and growth increase at higher elevations in the center of its distribution range (SW Germany). Trees – Structure and Function 31:673–686.

  • Ellenberg H. 1996: Vegetation Mitteleuropas mit den Alpen 5th edition. Ulmer Stuttgart 1095 p.

  • Fabrika M. Ďurský J. 2005: Algorithms and software solution of thinning models for SIBYLA growth simulator. Journal of Forest Science 51:431–445.

  • FAO 2006: Global Forest Resource Assessment 2005 - Progress Towards Sustainable Forest Management. FAO Forestry Paper 147.

  • Flechard C. R. Nemitz E. Smith R. Fowler D. Vermeulen A. T. Bleeker A. et al. 2011: Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the Nitro-Europe network. Atmospheric Chemistry and Physics 11:2703–2728.

  • Fotelli M. N. Rennenberg H. Holst T. Mayer H. Gessler A. 2003: Carbon isotope composition of various tissues of beech (Fagus sylvatica) regeneration is indicative of recent environmental conditions within the forest understorey. New Phytologist 159:229–244.

  • Füldner K. 1995: Strukturbeschreibung in Mischbeständen. Forstarchiv 66:235–606.

  • Gao T. Hedblom M. Emilsson T. Nielsen A. B. 2014: The role of forest stand structure as biodiversity indicator. Forest Ecology and Management 330:82–93.

  • Gessler A. Keitel C. Kreuzwieser J. Matyssek R. Seiler W. Rennenberg H. 2007: Potential risk of European beech (Fagus sylvatica L.) in a changing climate. Trees 21:1–11.

  • Grodzki W. 2010: The decline of Norway spruce Picea abies (L.) Karst. stands in Beskid Ślaski and Zywiecki: Theoretical koncept and reality. Beskydy 3:19–26.

  • Harmon M. E. Franklin J. F. Swanson F. J. Sollins P. Gregory S. V. Lattin J. D. et al. 1986: Ecology of Coarse Woody Debris in Temperate Ecosystems. Advances in Ecological Research 15:133–302.

  • Hauck M. Zimmermann J. Jacob M. Dulamsuren C. Bade C. Ahrends B. et al. 2012: Rapid recovery of stem increment in Norway spruce at reduced SO2 levels in the Harz Mountains Germany. Environmental pollution 164:132–141.

  • Heinrichs S. Schmidt W. 2009: Short-term effects of selection and clear cutting on the shrub and herb layer vegetation during the conversion of even-aged Nor-way spruce stands into mixed stands. Forest Ecology and Management 258:667–678.

  • Hlásny T. Sitková Z. (eds.) 2010: Spruce forests decline in the Beskids. National Forest Centre-Forest Research Institute Zvolen Czech University of Life Sciences Prague Forestry and Game Management Research Institute Jíloviště-Strnady Zvolen 182 p.

  • Hlásny T. Barka I. Rößiger J. Kulla L. Trombik J. Sarvašová Z. et al. 2017: Conversion of Norway spruce forests in the face of climate change: a case study in Central Europe. European Journal of Forest Research 136:1013–1028.

  • Hobi M. L. Commarmot B. Bugmann H. 2015: Pattern and process in the largest primeval beech forest of Europe (Ukrainian Carpathians). Journal of Vegetation Science 26:323–336.

  • Hopkins B. Skellam J. G. 1954: A new method for determining the type of distribution of plant individuals. Annals of Botany 18:213–227.

  • IPCC 2007: Climate change 2007: the physical science basis. In: Solomon S. Qin D. Manning M. Chen Z. Marquis M. Averyt K. B. et al. (eds.): Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press Cambridge 996 p.

  • Jaehne S. C. Dohrenbusch A. 1997: Ein Verfahren zur Beurteilung der Bestandesdiversität. Forstwissenschaftliches Centralblatt 116:333–345.

  • Jantsch M. C. Fischer H. S. Winter S. Fischer A. 2013: How are plant species in central European beech (Fagus sylvatica L.) forests affected by temperature changes? Shift of potential suitable habitats under global warming. Annals of Botany 4:97–113.

  • Jirgle J. Kučera J. Tichý J. Materna J. 1983: Poškození lesů v Jizerských horách imisemi. Zprávy lesnického výzkumu 28:16–24.

  • Jönsson A. M. Schroeder L. M. Lagergren F. Anderbrant O. Smith B. 2012: Guess the impact of Ips typographus – an ecosystem modelling approach for simulating spruce bark beetle outbreaks. Agricultural and Forest Meteorology 166–167:188–200.

  • Klopcic M. Boncina A. 2010: Patterns of tree growth in a single tree selection silver fir–European beech forest. Journal of Forest Research 15:21–30.

  • Kolář T. Čermák P. Trnka M. Žid T. Rybníček M. 2017: Temporal changes in the climate sensitivity of Norway spruce and European beech along an elevation gradient in Central Europe. Agricultural and Forest Meteorology 239:24–33.

  • Köppen W. 1936: Das Geographische System der Klimate Handbuch der Klimatologie. Gebrüder Borntraeger Berlin.

  • Konôpka J. Kaštier P. Konôpka B. 2015: Teoretické východiská a praktické opatrenia na harmonizáciu záujmov lesného hospodárstva a poľovníctva na Slovensku. Lesnícky časopis - Forestry Journal 61:114–123.

  • Konôpka B. Pajtík J. 2015: Why was browsing by red deer more frequent but represented less consumed mass in young maple than in ash trees?! Journal of Forest Science 61:431–438.

  • Králíček I. Vacek Z. Vacek S. Remeš J. Bulušek D. Král J. et al. 2017: Dynamics and structure of mountain autochthonous spruce-beech forests: impact of hilltop phenomenon air pollutants and climate. Dendrobiology 77:121–139.

  • Krejčí F. Vacek S. Bílek L. Mikeska M. Hejcmanová P. Vacek Z. 2013: The effects of climatic conditions and forest site types on disintegration rates in Picea abies occurring at the Modrava Peat Bogs in the Šumava National Park. Dendrobiology 70:35–44.

  • Kucbel S. Saniga M. Jaloviar P. Vencurik J. 2012: Stand structure and temporal variability in old-growth beech-dominated forests of the northwestern Carpathians: A 40-years perspective. Forest Ecology and Management 264:125–133.

  • Lorz C. Fürst C. Galic Z. Matijasic D. Podrázký V. Potocic N. et al. 2010: GIS-based probability assessment of natural hazards in forested landscapes of central and south-eastern Europe. Environmental Management 46:920–930.

  • Machar I. Vlčková V. Buček A. Voženílek V. Šálek L. Jeřabková L. 2017: Modelling of climate conditions in forest vegetation zones as a support tool for forest management strategy in European beech dominated forests. Forests 8:82–99.

  • Margalef D. R. 1958: Information theory in ecology. International Journal of General Systems 3:36–71.

  • Metz J. Annighöfer P. Schall P. Zimmermann J. Kahl T. Schulze E.-D. et al. 2016: Site-adapted admixed tree species reduce drought susceptibility of mature European beech. Global Change Biology 22:903–920.

  • Ministerial Conference on the Protection of Forests in Europe 2015: Madrid Ministerial Declaration 25 years together promoting Sustainable Forest Management in Europe. Madrid 20–21 October 2015 156 p.

  • Ministerstvo zemědělství 2018: Zpráva o stavu lesa a lesního hospodářství České republiky v roce 2017. Ministerstvo zemědělství Praha 118 p.

  • Mölder A. Bernhardt-Römermann M. Schmidt W. 2008: Herb-layer diversity in deciduous forests: raised by tree richness or beaten by beech? Forest Ecology and Management 256:272–281.

  • Mountford M. D. 1961: On E. C. Pielou’s index of non randomness. Journal of Ecology 49:271-275.

  • Motta R. 2003: Ungulate impact on rowan (Sorbus aucuparia L.) and Norway spruce (Picea abies (L.) Karst.) height structure in mountain forests in the eastern Italian Alps. Forest Ecology and Management 181:139–150.

  • Neuner S. Albrecht A. Cullmann D. Engels F. Griess V. C. Hahn W. A. et al. 2014: Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate. Global Change Biology 21:935–946.

  • Packham J. R. Thomas P. A. Atkinson M. D. Degen T. 2012: Biological Flora of the British Isles: Fagus sylvatica. Journal of Ecology 100:1557–1608.

  • Petráš R. Pajtík J. 1991: Sústava česko-slovenských objemových tabuliek drevín. Lesnícky časopis 37:49–56.

  • Petritan I. C. Commarmot B. Hobi M. L. Petritan A. M. Bigler C. Abrudan I. V. et al. 2015: Structural patterns of beech and silver fir suggest stability and resilience of the virgin forest Sinca in the Southern Carpathians Romania. Forest Ecology and Management 356:184–195.

  • Petritan A. M. von Lüpke B. Petritan I. C. 2009: Influence of light availability on growth leaf morphology and plant architecture of beech (Fagus sylvatica L.) maple (Acer pseudoplatanus L.) and ash (Fraxinus excelsior L.) saplings. European Journal of Forest Research 128:61–74.

  • Pielou E.C. 1975: Ecological Diversity. Wiley New York 165 p.

  • Pimm S. L. Jenkins C. N. Abell R. Brooks T. M. Gittleman J. L. Joppa L. N. et al. 2014: The biodiversity of species and their rates of extinction distribution and protection. Science 344:987.

  • Poleno Z. Vacek S. Podrázský V. Remeš J. Štefančík I. Mikeska M. et al. 2009: Pěstování lesů III. Praktické postupy pěstování lesů. Kostelec nad Černými lesy Lesnická práce 952 p.

  • Pretzsch H. 2006: Wissen nutzbar machen für das Management von Waldökosystemen. Allgemeine Forstzeitschrift/Der Wald 61:1158–1159.

  • Pretzsch H. Rötzer T. Matyssek R. Grams T. E. E. Häberle K. H. Pritsch K. et al. 2014: Mixed Norway spruce (Picea abies [L.] Karst) and European beech (Fagus sylvatica [L.]) stands under drought: from reaction pattern to mechanism. Trees 28:1305–1321.

  • Puettmann K. J. Wilson S. M. Baker S. C. 2015: Silvicultural alternatives to conventional even-aged forest management – what limits global adoption? Forest Ecosystems 2:8.

  • Putalová T. Vacek Z. Vacek S. Štefančík I. Bulušek D. Král J. 2019. Tree-ring widths as an indicator of air pollution stress and climate conditions in different Norway spruce forest stands in the Krkonoše Mts. Central European Forestry Journal 65:21–33.

  • Remeš J. Bílek L. Novák J. Vacek Z. Vacek S. Putalová T. et al. 2015: Diameter increment of beech in relation to social position of trees climate characteristics and thinning intensity. Journal of Forest Science 61:456–464.

  • Roth R. 1996: The effect of deer on the natural regeneration of mixed forests. Zeitschrift fur Jagdwissenschaft 42:143–156.

  • Sagnard F. Pichot C. Dreyfus P. Jordano P. Fady B. 2007: Modelling seed dispersal to predict seedling recruitment: recolonization dynamics in a plantation forest. Ecological Modelling 203:464–474.

  • Sefidi K. Marvi Mohadjer M. R. Zobeiri M. Etemad V. 2007: Investigation on dead trees effects on natural regeneration of Oriental beech and hornbeam in a mixed beech forest. Iranian Journal of Forest and Poplar Research 15:365–373.

  • Seidl R. Schelhaas M. J. Rammer W. Verkerk P. J. 2014: Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change 4:806–810.

  • Shahverdi M. Dashti H. Taghiyari H. R. Heshmati S. Gholamiyan H. Hossein M. A. 2013: The Impact of red heartwood on drying characteristics and mass transfer coefficients in beech wood. Austrian Journal of Forest Science 130:85–101.

  • Shannon C. E. 1948: A mathematical theory of communications. Bell System Technical Journal 27:379–423.

  • Schelhaas M. J. Nabuurs G. J. Hengeveld G. Reyer C. Hanewinkel M. Zimmermann N. E. et al. 2015: Alternative forest management strategies to account for climate change-induced productivity and species suitability changes in Europe. Regional Environmental Change 15:1581–1594.

  • Schulze E. D. Aas G. Grimm G. W. Gossner M. M. Walentowski H. Ammer C. et al. 2016: A review on plant diversity and forest management of European beech forests. European Journal of Forest Research 135:51–67.

  • Schütz J. P. 1999: Close-to-nature silviculture: is this concept compatible with species diversity? Forestry 72:359–366.

  • Schütz J. P. 2001: Opportunities and strategies of transforming regular forests to irregular forests. Forest Ecology and Management 151:87–94.

  • Schütz J. P. 2002: Silvicultural tools to develop irregular and diverse forest structures. Forestry 75:329–337.

  • Slanař J. Vacek Z. Vacek S. Bulušek D. Cukor J. Štefančík I. et al. 2017: Long-term transformation of submontane spruce-beech forests in the Jizerské hory Mts.: dynamics of natural regeneration. Central European Forestry Journal 63:212–224.

  • Souček J. 2002: Conversion of forest managed under systems involving coupes to a selection forest on an example of the Opuky research area. Journal of Forest Science 48:1–7.

  • Spiecker H. Hansen J. Klimo E. Skovsgaard J. P. Sterba H. von Teuffel K. 2004: Norway spruce conversion – options and consequences. Brill Leiden.

  • Sterba H. Zingg A. 2001: Target diameter harvesting – a strategy to convert even-aged forests. Forest Ecology and Management 151:95–105.

  • Šmilauer P. Lepš J. 2014: Multivariate analysis of ecological data using CANOCO 5. Cambridge university press 361 p.

  • Švec O. Bílek L. Remeš J. Vacek Z. 2015: Analysis of operational approach during forest transformation in Klokočná Range Central Bohemia. Journal of Forest Sciences 61:148–155.

  • Štícha V. Kupka I. Zahradník D. Vacek S. 2010: Influence of micro-relief and weed competition on natural regeneration of mountain forests in the Šumava Mountains. Journal of Forest Science 56:218–224.

  • Terek J. Dobrovič J. 2013: Ecologically active surface the basis for the study and evaluation of ecological functions. In: 4th International Conference „To Protect Our Global Environment of Future Generation” Obuda University Budapest p. 149–157.

  • Tesař V. Klimo E. Kraus M. Souček J. 2004: Dlouhodobá přestavba jehličnatého lesa na Hetlíně – kutnohorské hospodářství. Brno MZLU v Brně 60 p.

  • Trotsiuk V. Hobi M. L. Commarmot B. 2012: Age structure and disturbance dynamics of the relic virgin beech forest Uholka (Ukrainian Carpathians). Forest Ecology and Management 265:181–190.

  • Úradníček L. Maděra P. Tichá S. Koblížek J. 2009: Dřeviny České republiky. Lesnická práce Kostelec nad Černými lesy.

  • Urli M. Thiffault N. Barrette M. Bélanger L. Leduc A. Chalifour D. 2017: Key ecosystem attributes and productivity of boreal stands 20 years after the onset of silviculture scenarios of increasing intensity. Forest Ecology and Management 389:404–416.

  • Vacek S. Cipra Z. 1979: Struktura porostů v biocentru Jedlový důl. Zpráva pro CHKO Jizerské hory. VS Opočno a SCHKO Jizerské hory 18 p.

  • Vacek S. Vančura K. Zingari P.C. Jeník J. Simon J. Smejkal J. 2003: Mountain forests of the Czech Republic. Ministry of agriculture of the Czech Republic Prague 320 p.

  • Vacek S. Hejcman M. 2012: Natural layering foliation fertility and plant species composition of a Fagus sylvatica stand above the alpine timberline in the Giant (Krkonoše) Mts. Czech Republic. European Journal of Forest Research 131:799–810.

  • Vacek S. Vacek Z. Podrazský V. Bílek L. Bulušek D. Štefančík I. 2014a: Structural Diversity of Autochthonous Beech Forests in Broumovské Stěny National Nature Reserve Czech Republic. Austrian Journal of Forest Science 131:191–214.

  • Vacek S. Hůnová I. Vacek Z. Hejcmanová P. Podrázský V. Král J. et al. 2015a: Effects of air pollution and climatic factors on Norway spruce forests in the Orlické hory Mts. (Czech Republic) 1979–2014. European Journal of Forest Research 134:1127–1142.

  • Vacek S. Černý T. Vacek Z. Podrázský V. Mikeska M. Králíček I. 2017a: Long-term changes in vegetation and site conditions in beech and spruce forests of lower mountain ranges of Central Europe. Forest Ecology and Management 398:75–90.

  • Vacek S. Vacek Z. Kalousková I. Cukor J. Bílek L. Moser W. K. et al. 2018: Sycamore maple (Acer pseudoplatanus L.) stands on former agricultural land in the Sudetes-evaluation of ecological value and production potential. Dendrobiology 79:61–76.

  • Vacek Z. Vacek S. Bílek L. Král J. Remeš J. Bulušek D. et al. 2014b: Ungulate Impact on Natural Regeneration in Spruce-Beech-Fir Stands in Černý důl Nature Reserve in the Orlické Hory Mountains Case Study from Central Sudetes. Forests 5:2929–2946.

  • Vacek Z. Vacek S. Podrázský V. Bílek L. Štefančík I. Moser W. K. 2015b: Effect of tree layer and microsite on the variability of natural regeneration in autochthonous beech forests. Polish Journal of Ecology 63:233–246.

  • Vacek Z. 2017: Structure and dynamics of spruce-beech-fir forests in Nature Reserves of the Orlické hory Mts. in relation to ungulate game. Central European Forestry Journal 63:23–34.

  • Vacek Z. Bulušek D. Vacek S. Hejcmanová P. Remeš J. Bílek L. et al. 2017b: Effect of microrelief and vegetation cover on natural regeneration in European beech forests in Krkonoše national parks (Czech Republic Poland). Austrian Journal of Forest Science 134:75–96.

  • van der Maaten-Theunissen M. Bouriaud O. 2012: Climate–growth relationships at different stem heights in silver fir and Norway spruce. Canadian Journal of Forest Research 42:958–969.

  • von Oheimb G. Westphal C. Tempel H. Härdtle W. 2005: Structural pattern of a near-natural beech (Fagus sylvatica) forest (Serrahn North-east Germany). Forest Ecology and Management 212:253–263.

  • Vrška T. Hort L. Odehnalová P. Adam D. Horal D. 2001: Boubín virgin forest after 24 years (1972–1996) – Development of tree layer. Journal of Forest Science 47:439–456.

  • Wagner S. Madsen P. Ammer C. 2009: Evaluation of different approaches for modelling individual tree seedling height growth. Trees – Structure and Function 23:701–715.

  • Weisberg P. J. Bugmann H. 2003: Forest dynamics and ungulate herbivory: from leaf to landscape. Forest Ecology and Management 181:1–12.

  • Yamaguchi D. K. 1991: A simple method for cross-dating increment cores from living trees. Canadian Journal of Forest Research 21:414–416.

  • Zahradník D. Puš V. 2010: Program PoinPro Version 2.2. Czech University of Life Sciences Prague.

Search
Journal information
Impact Factor


CiteScore 2018: 0.68

SCImago Journal Rank (SJR) 2018: 0.18
Source Normalized Impact per Paper (SNIP) 2018: 0.399

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 173 173 27
PDF Downloads 162 162 15