Remote sensing-based forest health monitoring systems – case studies from Czechia and Slovakia

Open access


Aim of this paper is to present the remote sensing-based systems of forest health assessment in the Czech Republic and Slovakia, and to analyse both their strengths and weaknesses. Nationwide assessment of forest health in the Czech Republic is based on the interpretation of Sentinel–2 satellite data using novel approaches for cloud-free image synthesis based on all available satellite observations. A predictive statistical model to yield time series of leaf area index (LAI) from satellite observations is developed above extensive in-situ data, including LAI and forest defoliation assessment. Forest health is evaluated for each pixel from yearly changes of forest LAI, while the country-wise assessment of the health status is performed at the cadastral level. Methodology developed for Slovakia is based on a two-phase regression sampling. The first phase of the procedure provides an initial fast estimate of forest damage using only satellite observations (visible and infrared channels from Landsat or Sentinel–2 systems). The second phase refines the result of the first phase using data from a ground damage assessment (site-level defoliation from ICP Forests database). Resulting forest health assessment over the whole forest area is presented in 10 defoliation classes. The Czech Republic shows 1.6% of heavily damaged forests, 12.5% of damaged forests, 79.2% of forests with stable conditions, 6.3% of regenerated forests and 0.4% of strongly regenerated forests. In Slovakia, the total share of damaged stands (i. e. with defoliation higher than 40%) increased from 6 – 8% in 2003 – 2011 to 13 – 15% in 2012 – 2017. Both methodologies conduct nationwide assessment of forest health status in a fast and automatized way with high accuracy and minimal costs. The weaknesses are, for example, a high computational demands for production cloud free mosaics, inability to identify initial phases of forest health decline, exclusion of stands older than 80 years (in the Czech Republic) and inability to differentiate between harvested and severely damaged stands (in Slovakia). Finally, the paper outlines future development of both methodologies.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Banskota A. Kayastha N. Falkowski M. J. Wulder M. A. Froese R. E. White J. C. 2014: Forest Monitoring Using Landsat Time Series Data: A Review Canadian Journal of Remote Sensing 40:362–384.

  • Barka I. Bucha T. 2010: Satellite based regional system for observation of forest response to global environmental changes. In: Horák J. Halounová L. Hlásny T. Kusendová D. Voženílek V. (eds.): Advances in geoinformation technologies 2010. Ostrava Technical University of Ostrava p. 1–14.

  • Barka I. Bucha T. 2017: Evaluation of spruce forests in Slovakia based on freely available remote sensing data with respect to forest management. Acta Environmentalica Universitatis Comenianae (Bratislava) 25:5–13.

  • Bartold M. 2016: Development of forest cover mask to monitor the health condition of forests in Poland using long-term satellite observations. Leśne Prace Badawcze/Forest Research Papers 77:141–150.

  • Bucha T. 1999: Classification of tree species composition in Slovakia from satellite images as a part of monitoring forest ecosystems biodiversity. Acta Instituti Forestalis Zvolen p. 65–84

  • Bucha T. Barka I. 2014: Classification of forest damage in Slovakia. In: Bucha T. (ed.): Satellites in a service of forests. Zvolen National Forest Centre p. 14–28 (in Slovak).

  • Campbell P. K. E. Rock B. N. Martin M. E. Neefus C. D. Irons J. R. Middleton E. M. Albrechtova J. 2004: Detection of initial damage in Norway spruce canopies using hyperspectral airborne data. Remote Sensing of Environments 20:5557–5583.

  • Coleman T. L. Gudapati L. Derrington J. 1990: Monitoring forest plantations using Landsat Thematic Mapper data. Remote Sensing of Environment 33:211–221

  • Drusch M. Del Bello U. Carlier S. Colin O. Fernandez V. Gascon F. et al. 2012: Sentinel–2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment 120:25–36.

  • Ferretti M. 1997: Forest Health Assessment and Monitoring – Issues for Consideration. Environmental Monitoring and Assessment 48:45–72.

  • Franklin S. Lavigne M. Wulder M. A. Stenhouse G. B. 2002: Change detection and landscape structure mapping using remote sensing. The Forestry Chronicle 78:618–625.

  • Frolking S. Palace M. W. Clark D. B. Chambers J. Q. Shugart H. H. Hurtt G. C. 2009: Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. Journal of Geophysical Research 114:3–27.

  • Goldberg M. Goodenough D. G. Alvo M. Karam G. M. 1985: A hierarchical expert system for updating forestry maps with Landsat data. In: Proceedings of the IEEE 73:1054–1063.

  • Gross C. P. 2000: Remote sensing application for forest health status assessment. 2nd edition Commission of the European Communities 216 p.

  • Hais M. Jonášová M. Langhammer J. Kučera T. 2009: Comparison of two types of forest disturbance using multitemporal Landsat TM/ETM+ imagery and field vegetation data. Remote Sensing of Environment 113:835–845.

  • Hais M. Wild J. Berec L. Brůna J. Kennedy R. Braaten J. Brož Z. 2016: Landsat Imagery Spectral Trajectories–Important Variables for Spatially Predicting the Risks of Bark Beetle Disturbance. Remote Sensing 8:687.

  • Healey S. P. Cohen W. B. Yang Z. Kenneth Brewer C. Brooks E. B. Gorelick N. et al. 2018: Mapping forest change using stacked generalization: An ensemble approach. Remote Sensing of Environment 204:717–728.

  • Hlásny T. Barcza Z. Fabrika M. Balázs B. Churkina G. Pajtík J. et al. 2012: Climate change impacts on growth and carbon balance of forests in Central Europe. Climate Research 47:219–236.

  • Hollstein A. Segl K. Guanter L. Brell M. Enesco M. 2016: Ready-to-Use Methods for the Detection of Clouds Cirrus Snow Shadow Water and Clear Sky Pixels in Sentinel–2 MSI Images. Remote Sensing 8: 666.

  • Homolová L. Janoutová R. Malenovský Z. 2016: Evaluation of Various Spectral Inputs for Estimation of Forest Biochemical and Structural Properties from Airborne Imaging Spectroscopy Data. ISPRS – International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences XLI-B7:961–966.

  • Jackson R. D. 1983: Spectral Indices in n-Space. Remote Sensing of Environment 13:409–421.

  • Joria E.P. Ahearn S. A. 1997: A comparison of the Spot and landsat TM satellite systems for detecting gypsy moth defoliation in Michigan. Photogrametric Engineering & Remote Sensing 57:1605–1612.

  • Kennedy R. E. Yang Z. Cohen W. B. 2010: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr – Temporal segmentation algorithms. Remote Sensing of Environment 114:2897–2910.

  • Kopačková V. Lhotáková Z. Oulehle F. Albrechtová J. 2015: Assessing forest health via linking the geochemical properties of a soil profile with the biochemical parameters of vegetation. International Journal of Environmental Science and Technology 12:1987–2002.

  • Lambert N. J. Ardo J. Rock B. N. Vogelmann J. E. 1995: Spectral characterization and regression-based classification of forest damage in Norway spruce stands in the Czech Republic using Landsat Thematic Mapper data. International Journal of Remote Sensing 16 1261–1287.

  • Leblanc S. Chen J. M. Fernandes R. Deering D. Conley A. 2005: Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests. Agricultural and Forest Meteorology 129:187–207.

  • Lhotáková Z. Brodský L. Kupková L. Kopačková V. Potůčková M. Mišurec J. et al. 2013: Detection of multiple stresses in Scots pine growing at postmining sites using visible to near-infrared spectroscopy. Environmental Science: Process & Impacts 15:2004–2015.

  • Lindner M. Fitzgerald J. B. Zimmermann N. E. Reyer C. Delzon S. van der Maaten E. et al. 2014: Climate change and European forests: What do we know what are the uncertainties and what are the implications for forest management? Journal of Environmental Management 146:69–83.

  • Majasalmi T. Rautiainen M. Stenberg P. Rita H. 2012: Optimizing the sampling scheme for LAI-2000 measurements in a boreal forest. Agricultural and Forest Meteorology 154–155:38–43.

  • Malenovský Z. Homolová L. Zurita-Milla R. Lukeš P. Kaplan V. Hanuš J. et al. 2013: Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer. Remote Sensing of Environment 131:85–102.

  • Meigs G. W. Kennedy R. E. Cohen W. B. 2011: A Landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests. Remote Sensing of Environment 115:3707–3718.

  • Millar C. I. Stephenson N. L. 2015: temperate forest health in an era of emerging megadisturbance. Science 349:823–826.

  • Mišurec J. Kopačková V. Lhotáková Z. Hanuš J. Weyermann J. Entcheva-Campbell P. Albrechtova J. 2012: Utilization of hyperspectral image optical indices to assess the Norway spruce forest health status. Journal of Applied Remote Sensing 6:063545.

  • Mišurec J. Kopačková V. Lhotáková Z. Campbell P. Albrechtová J. 2016: Detection of Spatio-Temporal Changes of Norway Spruce Forest Stands in Ore Mountains Using Landsat Time Series and Airborne Hyperspectral Imagery. Remote Sensing 8:92.

  • Pavlenda P. Pajtík J. Priwitzer T. Capuliak J. Konôpka J. Krupová D. et al. 2014: Monitoring of forests in Slovakia. Annual report of PMS Forests for 2013. Zvolen NLC-LVÚ Zvolen 143 p. (in Slovak)

  • Pickell P. D. Hermosilla T. Frazier R. J. Coops N. C. Wulder M. A. 2015: Forest recovery trends derived from Landsat time series for North American boreal forests International Journal of Remote Sensing 37:138–149.

  • Račko J. 1996: Photoaerial monitoring of forest health status. Lesnícke štúdie 54 Bratislava SAP 66 p. (in Slovak).

  • Ranson K. J. Sun G. Kovacs K. Kharuk V. I. 2014: Disturbance recognition in the boreal forest using radar and Landsat-7. Canadian Journal of Remote Sensing 29:271–285.

  • Reiche J. Hamunyela E. Verbesselt J. Hoekman D. Herold M. 2018: Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2. Remote Sensing of Environment 204:147–161.

  • Rock B. N. Hoshizaki T. Miller J. R. 1988: Comparison of in situ and airborne spectral measurements of the blue shift associated with forest decline. Sensing of Environment 24:109–127.

  • Rock B. N. Vogelmann J. E. Williams D. L. Vogelmann A. F. Hoshizaki T. 1986: Remote detection of forest damage. BioScience 36:439–445.

  • Roy D. P. Wulder M. A. Loveland T. R. Woodcock C.E. Allen R. G. Anderson M. C. et al. 2014: Landsat- 8: Science and product vision for terrestrial global change research. Remote Sensing of Environment 145:154–172.

  • Santoro M. Beer C. Cartus O. Schmullius C. Shvidenko A. McCallum I. et al. 2011: Retrieval of growing stock volume in boreal forest using hypertemporal series of Envisat ASAR ScanSAR backscatter measurements. Remote Sensing of Environment 115:490–507.

  • Santoro M. Cartus O. Fransson J. E. S. Shvidenko A. McCallum I. Hall R. J. et al. 2013: Estimates of forest growing stock volume for Sweden Central Siberia and Québec using Envisat Advanced Synthetic Aperture Radar backscatter data. Remote Sensing 5:4503–4532.

  • Schmullius C. Thiel C. Pathe C. Santoro M. 2015: Radar Time Series for Land Cover and Forest Mapping. In: Kuenzer C. Dech S. Wagner W. (eds.): Remote Sensing Time Series. Remote Sensing and Digital Image Processing 22:323–356.

  • Scheer Ľ. 1997: Assessment of forest conditions employing two-phased satellite remote sensing. In: International Workshop: Application of Remote Sensing in European Forest Monitoring. Vienn Austria 14th – 16th Oct. 1996 p. 337–346.

  • Somogyi Z. Koltay A. Molnár T. Móricz N. 2018: Forest health monitoring system in Hungary based on MODIS products. Proceedings from 9th Hungarian GIS Conference and Exhibition Debrecen p. 325–330.

  • Szekielda K. H. 1988: Satellite monitoring of the Earth. John Willey & Sons 326 p.

  • Thurner M. Beer C. Santoro M. Carvalhais N. Wutzler T. Schepaschenko D. et al. 2014: Carbon stock and density of boreal and temperate forests. Global Ecology and Biogeography 23:297–310.

  • Wulder M. A. Dymond C. C. Coops N. C. Butson C. R. 2008: Multi-temporal analysis of high spatial resolution imagery for disturbance monitoring. Remote Sensing of Environment 112:2729–2740.

  • Wulder M. A. Masek J. G. Cohen W. B. Loveland T. R. Woodcock C. E. 2012: Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sensing of Environment 122:2–10.

  • Zhu Z. Woodcock C. E. 2012: Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment 118:83–94.

  • Zhu Z. Woodcock C. E. 2014: Automated cloud cloud shadow and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change. Remote Sensing of Environment 152:217–234.

  • Zhu Z. Wang S. Woodcock C.E. 2015: Improvement and expansion of the Fmask algorithm: cloud cloud shadow and snow detection for Landsats 4-7 8 and Sentinel 2 images. Remote Sensing of Environment 159:269–277.

Journal information
Impact Factor

CiteScore 2018: 0.68

SCImago Journal Rank (SJR) 2018: 0.18
Source Normalized Impact per Paper (SNIP) 2018: 0.399

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 241 232 31
PDF Downloads 180 174 41