Aboveground Net Primary Production of tree cover at the post-disturbance area in the Tatra National Park, Slovakia

Open access


Large-scale disturbances under the conditions of Slovakia, caused especially by storm and bark beetle, bring dramatic decline in carbon budget of the country, besides other negative consequences. The largest disturbance in modern history of the Slovak forestry was the storm damage that occurred in November 2004. The Tatra National Park (TNP) was one of the most affected regions. Thus, in this territory, two transects (T1 – the Danielov dom site and T2 – near the Horný Smokovec village) were established to survey basic dendrometric properties of trees in young stands established after the disaster. The standing stock of aboveground biomass in tree cover for the spring and autumn 2014 was calculated using the recorded variables, i.e. tree height and diameter measured at the stem base, together with the region-specific allometric relations. Then, the Aboveground Net Primary Production (ANPP) in tree cover was estimated with respect to its components (stem, branches and foliage). ANPP was 315 g m−2 per year (Transect T1), and 391 g m−2 per year (Transect T2). The differences in the structure of ANPP, i.e. contribution of tree components, were found between transects T1 and T2. They were caused by the contrasting tree species composition, specifically the ratios between Norway spruce and broadleaved species. Broadleaves allocated more biomass production to foliage than spruce. This phenomenon together with higher turnover (once a year) of foliage caused that broadleaves manifest higher share of fast-cycling carbon in comparison to the amount of carbon sequestrated in woody parts (stem and branches). High variability of ANPP was found within the transects, i.e. among the plots (microsites). As for the representative estimation of the standing stock of aboveground part of tree cover as well as ANPP at the post-disturbance area in the TNP territory, the survey should be performed on a net of research plots. Only this approach enables reliable estimates of carbon amount sequestrated in woody parts, eventually carbon yearly absorbed by young forest stands.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Cienciala E. Černý M. Tatarinov F. Apltauer J. Exnerová Z. 2006: Biomass functions applicable to Scots pine. Trees 20:483–495.

  • Dale V. H. Joyce L. A. McnNulty S. Neilson R. P. Ayres M. P. Flanningan M. D. et al. 2001: Climate change and forest disturbances. BioSciences 51:723–734.

  • Dutca I. Abrudan I. V. Stancioiu P. T. Blujdea V. 2010: Biomass conversion and expansion factors for young Norway spruce (Picea abies [L.] Karst.) trees planted on non-forest lands in Eastern Carpathians. Notuale Botanicae Horti Agrobotanici Cluj-Napoca 38:286–292.

  • Gardiner B. Schuck A. S. Schelgaas M. J. Orazio Ch. Blennow K. Nicoll B. et al. 2011: Living with storm damage to forests. European Forest Institute Joensuu 129 p.

  • Gubka A. et al. 2014: Vetrová kalamita Žofia z 15. 5. 2014. Usmernenie Lesníckej ochranárskej služby NLC Zvolen 8 p.

  • Chroust L. 1985: Above–ground biomass of young pine forests (Pinus sylvestris) and its determination. Communicationes Instituti Forestalis Čechosloveniae 14 :127–145.

  • Chroust L. Tesařová 1985: Quantification of above-ground components of 20 years old Norway spruce (Picea abies [L.] Karst.). Communicationes Instituti Forestalis Čechosloveniae 14:111–126.

  • Kho L. K. Malhi Y. Tan S. K. S. 2013: Annual budget and seasonal variation of aboveground and belowground net primary productivity in a lowland dipterocarp forest in Borneo. Biogeosciences 118:1282–1296.

  • Kaštier P. Bučko J. 2010: Analýza intenzity a dislokácie škôd spôsobených raticovou zverou na iniciálnych štádiách lesa po kalamite roku 2004 vo Vysokých Tatrách. In: Výskum smrečín destabilizovaných škodlivými činiteľmi. NLC Zvolen p. 198–205.

  • Konôpka B. 2003: Needle traces as indicators of growing conditions in Scots pine (Pinus sylvestris L.). Journal of Forest Science 49:1–10.

  • Konôpka B. Pajtík J. Moravčík M. Lukac M. 2010: Biomass partitioning and growth efficiency in four naturally regenerated forest tree species. Basic and Applied Ecology 11:234–243.

  • Konôpka B. Pajtík J. Noguchi K. Lukac M. 2013: Replacing Norway spruce with European beech: A comparison of biomass and net primary production patterns in young stands. Forest Ecology and Management 302:185–192.

  • Konôpka B. Pajtík J. 2014: Similar foliage area but contrasting foliage biomass between young beech and spruce stands. Lesnícky časopis - Forestry Journal 60:205–213.

  • Konôpka B. Pajtík J. Šebeň V. 2015: Biomass functions and expansion factors for young trees of European ash and Sycamore maple in the Inner Western Carpathians. Austrian Journal of Forest Science 132:1–60.

  • Koreň M. 2005: Čo sa stalo 19. novembra 2004 v tatranskej oblasti? Tatry 44:4–6.

  • Kurz W. A. Apps M. J. 1999: A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecological Applications 9:526–547.

  • Lal R. Follett R.F. 2009: Soil carbon sequestration and greenhouse effects. Soil Science Society of America Madison 366 p.

  • Liu S. Bond-Lamberty B. Hicke J. A. Vargas R. Zhao S. Chen J. et al. 2011: Simulating the impacts of disturbances on forest carbon cycling in North America: Processes data models and challenges. Journal of Geographical Research 16:1–22.

  • Marklund L. G. 1987: Biomass functions for Norway spruce (Picea abies L. Karst.) in Sweden. Umeå Swedish University of Agricultural Sciences 27 p.

  • Nikolov Ch. Konôpka B. Kajba M. Galko J. Kunca A. Janský L. 2014: Post-disaster management and bark beetle outbreak in Tatra National Park Slovakia. Mountain Research and Development 34: 326–335.

  • Pajtík J. Konôpka B. Lukac M. 2008: Biomass functions and expansion factors in young Norway spruce (Picea abies [L.] Karst) trees. Forest Ecology and Management 256:1096–1103.

  • Pajtík J. Konôpka B. Lukac M. 2011a: Individual biomass factors for beech oak and pine in Slovakia: a comparative study in young naturally regenerated stands. Trees 25:277–288.

  • Pajtík J. Konôpka B. Priwitzer T. 2011b: Alokácia dendromasy v mladých porastoch buka obyčajného a duba zimného. Zprávy lesnického výzkumu 56:291–300.

  • Pajtík J. Konôpka B. Marušák R. 2013: Above-ground net primary productivity in young stands of beech and spruce. Lesnícky časopis - Forestry Journal 59:154–162.

  • Pajtík J. Konôpka B. 2015: Quantifying edible biomass on young Salix caprea and Sorbus aucuparia trees for Cervus elaphus: estimates by regression models. Austrian Journal of Forest Science 132:61–80.

  • Pajtík J. Konôpka B. Bošeľa M. Šebeň V. Kaštier P. 2015a: Modelling forage potential for red deer: A case study in post-disturbance young stands of rowan. Annals of Forest Research 58:91–107.

  • Pajtík J. Konôpka B. Šebeň V. Michelčík P. Fleischer P. 2015b: Alokácia biomasy smrekovca opadavého prvého vekového stupňa vo Vysokých Tatrách. Štúdie TANAP-u 11:229–241.

  • Schmidt-Vogt H. 1977: Die Fichte. Band I. Taxomomie - Verbre-Band I. Taxomomie – Verbreitung – Morphologie Ökologie - Waldgesellschaften. Hamburg and Berlin Verlag Paul Parey 472 p.

  • Seidl R. Rammer W. Bellos P. Hochbichler E. Lexer M.J. 2010: Testing generalized allometries in allocation modeling within an individual-based stimulation framework. Trees 24:139–150.

  • Skovsgaard J. P. Bald C. Nord-Larsen T. 2011: Functions for biomasss and basic denisty of stem crown and root system of Norway spruce (Picea abies [L.] Karst.) in Denmark. Scandinavian Journal of Forest Research 26:3–20.

  • Šebeň V. 2011a: Prirodzená obnova po kalamite z novembra 2004 vo Vysokých Tatrách. In: Výskum smrečín destabilizovaných škodlivými činiteľmi. Zvolen Národné lesnícke centrum p. 297–308.

  • Šebeň V. 2011b: Podiel a skladba prežívajúcej umelej obnovy na kalamitisku vo Vysokých Tatrách. In: Výskum smrečín destabilizovaných škodlivými činiteľmi. Zvolen Národné lesnícke centrum p. 309–321.

  • Šebeň V. Konôpka B. Bošeľa M. Pajtík J. 2015: Contrasting development of declining and living larch-spruce stands after a disturbance event: A case study in High Tatra Mts. Lesnícky časopis - Forestry Journal 61:157-166.

  • Tateno R. Hishi T. Takeda H. 2004: Above- and belowground biomass and net primary production in a cool-temperate deciduous forest in relation to topographical changes in soil nitrogen. Forest Ecology and Management 193:297–306.

  • Tobin B. Nieuwenhuis M. 2007: Biomass expansion factors for Sitka spruce (Picea sitchensis (Bong) Carr.) in Ireland. European Journal of Forest Research 126: 198–196.

  • Vološčuk I. et al. 1994: Tatranský národný park. Gradus Martin 557 p.

  • Waring R. H. Lansberg J. J. Williams M. 1998: Net primary production of forests: a constant fraction of gross primary production? Tree Physiology 18:129–134.

  • Wirth C. Schumacher J. Schulze E. D. 2004: Generic biomass functions for Norway spruce in central Europe – a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiology 24:121–139.

  • Xiao Ch.-W. Yuste J. C. Janssens I. Roskams P. Nachtergale L. Carrara A. et al. 2003: Above- and belowground biomass and net primary production in a 73-year-old Scots pine forest. Tree Physiology 23:505–516.

  • Yuste J. C. Konôpka B. Janssens I. Coenen K. Xiao C. W. Ceulemans R. 2005 Contrasting net primary productivity and carbon distribution between neighbouring stands of Quercus robur and Pinus sylvestris. Tree Phyiology 25:701–712.

  • Zianis D. Muukkonene P. Mäkipää R. Mencuccini M. 2005: Biomass and stem volume equations for tree species in Europe. Silva Fennica 4:1–63.

  • Zianis D. Mencuccini M. 2005: Aboveground net primary productivity of a beech (Fagus moesiaca) forest: a case study of Naousa forest north Greece. Tree Physiology 25:713–722.

Journal information
Impact Factor

CiteScore 2018: 0.68

SCImago Journal Rank (SJR) 2018: 0.18
Source Normalized Impact per Paper (SNIP) 2018: 0.399

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 286 180 1
PDF Downloads 126 83 2