Effect of deforestation on watershed water balance: hydrological modelling-based approach / Vplyv odlesnenia na vodnú bilanciu povodia: prístup na báze hydrologického modelovania

Open access

Abstract

Changes in land cover, including deforestation, can have significant effect on watershed hydrology. We used hydrological model with distributed parameters to evaluate the effect of simulated deforestation on water balance components in the watershed Ulička (97 km2, 84.3% forest cover) located in the eastern Slovakia. Under the current land cover, average interception accounted for 21.1% of the total precipitation during the calibration period 2001-2013. Most of the precipitation (77%) infiltrated into the soil profile, and less than half of this amount percolated into the ground water aquifer. The surface runoff accounted for 1.2% of the total precipitation only, while the interflow accounted for ca. 12%. The largest proportion of the precipitation contributed to the base flow (23%). Watershed`s deforestation induced significant decrease in the interception and evapotranspiration (by 76% and 12%, respectively). At the same time, total runoff, surface runoff, interflow and base flow increased by 20.4, 38.8, 9.0 and 25.5%, respectively. Daily discharge increased by 20%. The deforestation significantly increased peak discharge induced by a simulated extreme precipitation event with the recurrence interval of 100 years. In the deforested watershed, the peak discharge was higher by 58% as compared with the current land cover. Peak discharge occurred in 432 minutes with the current land cover and in 378 minutes with deforestation, after the precipitation event had started. The presented assessment emphasized the risk of adverse effect of excessive deforestation on watershed hydrology. At the same time, the developed model allows testing the effect of other land cover scenarios, and thus supports management in the investigated watershed.

Abstrakt

Zmeny vo vegetačnom kryte a využívaní krajiny, vrátane odlesnení, môžu mať významný vplyv na hydrologickú bilanciu povodí. V tejto štúdii bol na analýzu vplyvu simulovaného odlesnenia na jednotlivé zložky vodnej bilancie použitý hydrologický model s distribuovanými parametrami. Výskum bol realizovaný v povodí Ulička na východnom Slovensku (97 km2, lesnatosť 84,3 %). Pri súčasnom využívaní krajiny pripadalo na intercepciu v priemere 21,1 % z celkového úhrnu zrážok počas kalibračného obdobia 2001 - 2013. Najväčší podiel zrážok (77 %) bol infiltrovaný do pôdneho profilu a necelá polovica z tohoto množstva prenikla do vodonosnej vrstvy podzemnej vody. Zatiaľ čo podpovrchový odtok tvoril z celkového úhrnu zrážok približne 12 %, v prípade povrchového odtoku išlo len o 1,2 % podiel. Najvyššia časť úhrnu zrážok prispela k tvorbe základného odtoku (23 %). Simulované odlesnenie povodia vyvolalo významný pokles intercepcie (o 76 %) a evapotranspirácie (o 12 %). Celkový, povrchový, podpovrchový a základný odtok zároveň vzrástli o 20,4; 38,8; 9,0 a 25,5 %. Denný prietok sa v priemere zvýšil o 20 %. Odlesnenie významne ovplyvnilo kulminačný prietok vyvolaný simulovanou extrémnou zrážkovou udalosťou s pravdepodobnosťou výskytu 100 rokov. V odlesnenom povodí bol kulminačný prietok o 58 % vyšší v porovnaní s prietokom pri súčasnom využití územia. Kulminačné prietoky sa vyskytli po 432 minútach od začatia zrážkovej udalosti pri súčasnom využití územia a po 378 minútach v prípade scenára odlesnenia. Prezentované výsledky poukázali na riziko nepriaznivého vplyvu rozsiahlych odlesnení na hydrologické procesy v povodí. Vyvinutý hydrologický model zároveň umožňuje testovanie vplyvu rôznych scenárov využívania krajiny, čím podporuje manažment lesa a krajiny v skúmanom povodí.

References

  • Alila, Y., Kuras, P. K., Schnorbus, M., Hudson, R., 2009: Forests and floods: A new paradigm sheds light on age-old controversies. Water Resource Research, 45:1-24.

  • Augusto, L., Ranger, J., Binkley, D., Rothe, A., 2002: Impact of several common tree species of European temperate forests on soil fertility. Annals of Forest Science, 59:233-253.

  • Bahremand, A., De Smedt, F., Corluy, J., Liu, Y. B., Poorova, J., Velcicka, L., Kunikova, E., 2006: WetSpa Model Application for Assessing Reforestation Impacts on Floods in Margecany- Hornad Watershed, Slovakia. Water Resources Management, 21:1373-1391.

  • Bara, M., Kohnová, S., Gaál, L., Szolgay, J., Hlavčová, K., 2009: Estimation of IDF curves of extreme rainfall by simple scaling in Slovakia. Contributions to Geophysics and Geodesy, 39:187-206.

  • Calanca, P., Roesch, A., Jasper, K., Wild, M., 2006: Global warming and the summertime evapotranspiration regime of the Alpine region. Climatic Change, 79:65-78.

  • Calder, I. R., 2007: Forests and water - ensuring forest benefits outweigh water costs. Forest Ecology and Management, 251:110-120.

  • Calder, I. R., Aylward, B., 2006: Forest and floods: Moving to an evidence-based approach to watershed and integrated flood management. International Water Resource Association, 31:1-13.

  • Calder, I. R., Smyle, J., Aylward, B., 2007: Debate over flood-proofing effects of planting forests. Nature, 450: 945 p.

  • Caldwell, P. V., Kennen, J. G., Sun, G., Kiang, J. E., Butcher, J. B., Eddy, M. C. et al., 2015: A comparison of hydrologic models for ecological flows and water availability. Ecohydrology, n/a-n/a. doi:10.1002/eco.1602.

  • De Groot, R., Brander, L., van der Ploeg, S., Costanza, R., Bernard, F., Braat, L. P. et al., 2012: Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services, 1:50-61.

  • Duan, Q., Gupta, V.K., Sorooshian, S., 1992: Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resource Research, 28:1015-1031.

  • Eckhardt, K., Breuer, L., Frede, H. G., 2003: Parameter Uncertainty and the Significance of Simulated Land Use Change Effects. Journal of Hydrology, 273:164-176.

  • EEA, 2006: The thematic accuracy of Corine land cover 2000. Assessment Using LUCAS (Land Use/Cover Frame Statistical Survey), Technical report No 7/2006. European Environmental Agency, Copenhagen. Availaible at: http://www.eea.europa.eu/publications/technical_report_2006_7.

  • Elfert, S., Bormann, H., 2010: Simulated impact of past and possible future land use changes on the hydrological response of the Northern German lowland “Hunte” catchment. Journal of Hydrology, 383:245-255.

  • Fezzi, C., Harwood, A. M., Lovett, A. A., Bateman, I. J., 2015: The environmental impact of climate change adaptation on land use and water quality. Nature Climate Change, 5:255-260.

  • Food and Agricultural Organization of the United Nations (FAO) 2010: Global Forest Resources Assessment 2010: Main Report. FAO Forestry Paper no. 163.

  • Food and Agriculture Organization of the United Nations/Center for International Forestry Research (FAO/CIFOR) 2005: Forests and Floods: Drowning in Fiction or Thriving on Facts? Bangkok.

  • Henry, N., 1998: Overview of the Caspar Creek watershed study. In: Ziemer, R. R., technical coordinator. Proceedings of the conference on coastal watersheds: the Caspar Creek story, 1998 May 6; Ukiah, CA. General Tech. Rep. PSW GTR-168. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, p. 1-9.

  • Hewlett, J. D., 1982: Principles of Forest Hydrology. The University of Georgia Press, Athens, 183 p.

  • Hlavčová, K., Horvát, O., Szolgay, J., Danko, M., Kohnová, S., 2007: Scenarios of land use changes and simulations of hydrological responses in the Poprad river basin. Meteorological Journal, 10:199-203.

  • Hlavčová, K., Szolgay, J., Kohnová, S., Horvát, O., 2009: The limitations of assessing impacts of land use changes on runoff with a distributed hydrological model: case study of the Hron River. Biologia, 64:589-593.

  • Hornbeck, J. W., Eagar, C., Bailey, A. S., Campbell, J. L., 2014: Comparisons with results from the Hubbard Brook Experimental Forest in the Northern Appalachians. In Response of a Forest Watershed Ecosystem: Commercial Clearcutting in the Southern Appalachians, New York: Oxford University Press, p. 213-228.

  • Horvát, O., 2008: Description of the rainfall-runoff model FRIER. SAH - Slovak Association of Hydrogeologists, Groundwater XIV, 1:37-45.

  • Kindermann, G. E., McCallum, I., Fritz, S., Obersteiner, M., 2008: A global forest growing stock, biomass and carbon map based on FAO statistics. Silva Fennica, 42:387-396.

  • Kostka, Z., Holko, L., 2007: Effect of land use change on hydrological regime in the upper Vah river catchment. Meteorological Journal, 10:193-197.

  • Kostka, Z., Holko, L., 2006: Role of forest in hydrological cycle - forest and runoff. Meteorological Journal, 9:143-148.

  • Kuemmerle, T., Hostert, P., Radeloff, V. C., Perzanowski, K., Kruhlov, I., 2007: Post-socialist forest disturbance in the carpathian border region of Poland, Slovakia, and Ukraine. Ecological Applications, 17:1279-1295.

  • Langhammer, J., Su, Y., Bernsteinová, J., 2015: Runoff Response to Climate Warming and Forest Disturbance in a Mid-Mountain Basin. Water, 7:3320-3342.

  • Lee, R., 2005: Forest Hydrology. Dehra Dun, Bishen Singh Mahendra Pal Singh, 349 p.

  • Lewis, J., Eads, R. E., Ziemer, R. R., 2000: Research in the Caspar Creek Experimental Watersheds, Northern California. EOS, Transactions. American Geophysical Union, 81: F380.

  • Liu, Y. B., De Smedt, F., 2004: WetSpa extension, documentation and user manual, Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Belgium.

  • Malík, P., Bačová, N., Hronček, S., Ivanič, B., Káčer, Š., Kočický, D. et al., 2007: Zostavovanie geologických máp v mierke 1 : 50 000 pre potreby integrovaného manažmentu krajiny. ŠGÚDŠ Bratislava. Manuskript - archív Geofondu ŠGÚDŠ č. 88158, 552 p.

  • Messerli, B., Ives, J. D. (eds.), 1997: Mountains of the World: A Global Priority. Parthenon, Publishing, New York and Carnforth, 495 p.

  • Michel, A. K., Seidling, W., Lorenz, M., Becher, G. (eds.), 2014: Forest condition in Europe: 2013 Technical report of ICP Forests; Report under the UNECE Convention on Long-Range Transboundary Air Pollution (CLRTAP). Thünen Working Paper, 19, 134 p.

  • Mueller, E. N., Francke, T., Batalla, R. J., Bronstert, A., 2009: Modelling the effects of land-use change on runoff and sediment yield for a meso-scale catchment in the Southern Pyrenees. Catena, 79:288-296.

  • Nash, J. E., Sutcliffe, V., 1970: River flow forecasting through conceptual models. Part I. A discussion of principles. Journal of Hydrology, 10:272-290.

  • Niehoff, D., Fritsch, U., Bronstert, A., 2002: Land-use impacts on storm-runoff generation : scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany. Journal of Hydrology, 267:80-93.

  • Nisbet, T., 2005: Water Use by Trees, Forestry Commission, Information Note, Forestry Commission, Edinburgh, 8 p.

  • Pavlenda, P., Pajtík, J., Priwitzer, T., Capuliak, J., Konôpka, M., Krupová, D. et al., 2013: Monitoring lesov Slovenska. ČMS Lesy, Správa za rok 2012. Zvolen, NLC, 151 p.

  • Rao, L. Y., Sun, G., Ford, C. R., Vose, J. M., 2011: Modeling potential evapotranspiration of two forested watersheds in the southern Appalachians. Transactions of the American Society of Agricultural and Biological Engineers, 54:2067-2078.

  • Remiášová, R., 2009: Priestorová regionalizácia klimatických charakteristík s bodovým meraním. Dizertačná práca, SvF STU v Bratislave, Bratislava, 111 p.

  • Seidl, R., Schelhaas, M. J., Rammer, W., Verkerk, P. J., 2014: Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change, 4:806-810.

  • Stohlgren, T., Jarnevich, C., Kumar, S., 2007: Forest legacies, climate change, altered disturbance regimes, invasive species and water. Unasylva, 229:44-49.

  • Sun, G., McNulty, S. G., Lu, J., Amatya, D. M., Liang, Y., Kolka, R. K., 2005: Regional annual water yield from forest lands and its response to potential deforestation across the southeastern United States. Journal of Hydrology, 308:258-268.

  • Sun, G., McNulty, S. G., Shepard, J. P., Amatya, D. M., Riekerk, H., Comerford, N. B. et al., 2001: Effects of timber management on wetland hydrology in the eastern United States. Forest Ecology and Management, 143:227-236.

  • Tate, K. W., 1996: Interception on Rangeland Watersheds; Rangeland Watershed Program, Factsheet, No. 36

  • Uunila, L., Guy, B., Pike, R., 2006: Hydrologic effects of mountain pine beetles in the interior pine forests of British Columbia: key questions and current knowledge. Streamline, 9:1-6.

  • Van Dijk, A. I. J. M., Keenan, R., 2007: Planted forests and water in perspective. Forest Ecology and Management, 251:1-9.

  • Verbunt, M., Groot Zwaaftink, M., Gurtz, J., 2005: The hydrologic impact of land cover changes and hydropower stations in the Alpine Rhine basin. Ecological Modelling, 09/2005.

  • Vörösmarty, C., Sahagian, D., 2000: Anthropogenic disturbance of the terrestrial water cycle. BioScience, 50:753-765.

  • Vrugt, J. A., Gupta, H. V., Bouten, W., Sorooshian, S., 2003: A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resources Research, 39:1-16/1-14.

  • Wagener, T., 2007: Can we model the hydrological impacts of environmental change? Hydrological Processes, 21:3233-3236.

  • ZBGIS®. Geodesy, Cartography and Cadastre Authority of Slovak Republic. Availaible at: https://zbgis.skgeodesy.sk/tkgis/default.aspx

  • Zhang, T., Zhang, X., Xia, D., Liu, Y., 2014: An Analysis of Land Use Change Dynamics and Its Impacts on Hydrological Processes in the Jialing River Basin. Water, 6:3758-3782.

Central European Forestry Journal

The Journal of National Forest Centre – Forest Research Institute Zvolen

Journal Information


CiteScore 2016: 0.56

SCImago Journal Rank (SJR) 2016: 0.230
Source Normalized Impact per Paper (SNIP) 2016: 0.454

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 40 40 40
PDF Downloads 2 2 2