How does soil water potential limit the seasonal dynamics of sap flow and circumference changes in European beech?

Open access

Abstract

We focus on the analysis of sap flow and stem circumference changes in European beech (Fagus sylvatica, L.) in relation to available soil water and weather conditions during the growing seasons 2012 and 2013. The objective was to examine how soil water potential affects growth and transpiration of a mature beech stand situated at the lower distributional limit of beech in Slovakia. To be able to evaluate beech response to soil water shortage, we irrigated a group of 6 trees during the period of pronounced drought, while the control group of other 6 trees remained exposed to actual weather conditions. Mean air temperatures of both seasons were considerably above the long-term average and the temporal pattern of precipitation differed between the years. During the whole growing season 2012, beech samples transpired an average volume of 6.9 m3 of water in the control and 7.7 m3 in the irrigated group. A slightly higher average volume was found in the growing season 2013 under both treatments (7.7 m3 in control and 10.5 m3 in irrigated trees). In the drought period 2012, when the irrigation experiment was commenced, the sap flow in the control group was reduced by 30% as compared with the irrigated group. In 2013, a 38.1% difference in sap flow was observed between the groups. Sap flow in the non-irrigated trees decreased with reducing soil moisture, and ceased at soil water potential -0.6 MPa. In both treatments and years, we found significant correlations between hourly sap flow and investigated weather variables. A reduction in stem circumferences of the control trees, which was observed during stem shrinkage phase, was up to 19% in 2012 and 10% in 2013. We conclude that stem circumference shrinkage during the peak of soil drought was induced by the cessation in the sap flow process.

Abstrakt

V práci sa zameriavame na analýzu transpiračného prúdu a zmien obvodov kmeňa buka lesného (Fagus sylvatica L.) vo vzťahu k disponibilnej pôdnej vode a meteorologickým podmienkam vo vegetačnom období 2012 a 2013. Cieľom bolo zistiť, ako vodný potenciál pôdy ovplyvňuje rast a transpiráciu bukového porastu na spodnej hranici výskytu buka na Slovensku. Počas periódy pôdneho sucha bola skupina 6 jedincov buka intenzívne zavlažovaná, zatiaľ čo kontrolná skupina 6 jedincov bola vystavená aktuálnym meteorologickým podmienkam. Vo vegetačnej sezóne oboch rokov boli zistené nadpriemerné mesačné teploty vzduchu. Časové rozloženie zrážok počas vegetačnej sezóny sa medzi rokmi líšilo. Vo vegetačnom období 2012, jedince buka transpirovali priemerne 6,9 m3 vody v kontrolnej skupine a 7,7 m3 v zavlažovanej skupine. V roku 2013 bol v oboch skupinách zistený vyšší objem transpiračného prúdu (priemerne 7,7 m3 v kontrolnej a 10,5 m3 v zavlažovanej skupine). V priebehu zavlažovacieho experimentu v období sucha 2012 bol transpiračný prúd jedincov kontrolnej skupiny v porovnaní so zavlažovanými jedincami buka nižší o 30 %. V roku 2013 bol medzi skupinami pozorovaný rozdiel 38,1 %. Vplyv pôdneho sucha na transpiráciu sa začal významne prejavovať pri hodnote vodného potenciálu pôdy −0,6 MPa. V oboch skupinách aj rokoch bol preukázaný štatisticky významný vzťah medzi hodinovými údajmi transpiračného prúdu a väčšinou skúmaných meteorologických charakteristík. Počas fázy zmršťovania kmeňov v období sucha, bol u jedincov kontrolnej skupiny pozorovaný 19 % pokles na obvode stromov v roku 2012 a 10 % v roku 2013. Na základe našich pozorovaní môžeme konštatovať, že kontrakcie obvodov kmeňov v období vrcholiaceho pôdneho sucha boli vyvolané útlmom v procese transpiračného prúdu.

References

  • Bošeľa, M., Pajtík, J., Konôpka, B., Šebeň, V., Vida, T., 2013: Modelling effects of weather condition on seasonal dynamics of the stem circumference increment in a mixed stand of Norway spruce and European beech. Lesnícky časopis - Forestry Journal 59:180-188.

  • Cavin, L., Mountford, E. P., Peterken, G. F., Jump, A. S., 2013: Extreme drought alters competitive dominance within and between tree species in a mixed forest stand. Functional Ecology 27:1424-1435.

  • Čermák, J., Kučera, J., Nadezhdina, N., 2004: Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees 18:529-546.

  • Clausnitzer, F., Köstner, B., Schwärzel, K., Bernhofer, C., 2011: Relationships between canopy transpiration, atmospheric conditions and soil water availability-Analyses of long-term sap-flow measurements in an old Norway spruce forest at the Ore Mountains/Germany. Agricultural and Forest Meteorology 151:1023-1034.

  • Dalsgaard, L., Mikkelsen, T. N., Bastrup-Birk, A., 2011: Sap flow for beech (Fagus sylvatica L.) in a natural and a managed foresteffect of spatial heterogeneity. Journal of Plant Ecology 4:23-35.

  • Dedrick, S., Spiecker, H., Orazio, C., Tomé, M., Martinez, I. (eds.), 2007: Plantation or Conversion - The Debate! Ideas presented and discussed at a joint EFI Project-Centre conference held 21-23 May 2006 in Freiburg, Germany. Discussion Paper, 13: 98 p.

  • Dittmar, C., Elling, W., 2007: Dendroecological investigation of the vitality of Common Beech (Fagus sylvatica L.) in mixed mountain forests of the Northern Alps (South Bavaria). Dendrochronologia 25:37-56.

  • Gartner, K., Nadezhdina, N., Englisch, M., Čermak, J., Leitgeb, E., 2009: Sap flow of birch and Norway spruce during the European heat and drought in summer 2003. Forest Ecology and Management 258:590-599.

  • Geßler, A., Keitel, C., Kreuzwieser, J., Matyssek, R., Seiler, W., Rennenberg, H., 2006: Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21:1-11.

  • Granier, A., Reichstein, M., Bréda, N., Janssens, I. A., Falge, E., Ciais, P. et al., 2007: Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricultural and Forest Meteorology 143:123-145.

  • Green Report of Ministry of Agriculture and Rural Development of the Slovak Republic 2013: Report of the forestry sector in the Slovak Republic for the year 2012: 25 p.

  • Hartmann, H., Ziegler, W., Kolle, O., Trumbore, S., 2013: Thirst beats hunger - declining hydration during drought prevents carbon starvation in Norway spruce saplings. New Phytologist 200:340-349.

  • Hlásny, T., Barcza, Z., Fabrika, M., Balázs, B., Churkina, G., Pajtík, J. et al., 2011: Climate change impacts on growth and carbon balance of forests in Central Europe. Climate Research 47:219-236.

  • Hlásny, T., Mátyás, C., Seidl, R., Kulla, L., Merganičová, K., Trombik, J. et al., 2014: Climate change increases the drought risk in Central European forests: What are the options for adaptation? Lesnícky časopis - Forestry Journal 60:5-18.

  • Huang, Y., Zhao, P., Zhang, Z., Li, X., He, Ch., Zhang, R., 2008: Transpiration of Cyclobalanopsis glauca (syn. Quercus glauca) stand measured by sap-flow method in a karst rocky terrain during dry season. Ecological Research 24:791-801.

  • Ježík, M., Blaženec, M., Střelcová, K., Ditmarová, Ľ., 2011: The impact of the 2003-2008 weather variability on intra-annual stem diameter changes of beech trees at a submontane site in central Slovakia. Dendrochronologia 29:227-235.

  • Jump, A., Rico, L., Coll, M., Peñuelas, J., 2012: Wide variation in spatial genetic structure between natural populations of the European beech (Fagus sylvatica) and its implications for SGS comparability. Heredity 108:633-639.

  • Klein, T., Rotenberg, E., Cohen-Hilaleh, E., Raz-Yaseef, N., Tatarinov, F., Preisler, Y. et al., 2012: Quantifying transpirable soil water and its relations to tree water use dynamics in a water- -limited pine forest. Ecohydrology, Available at: DOI:10.1002/ eco.1360.

  • Konôpka, B., Pajtík, J., Bošeľa, M., Hlásny, T., Sitková, Z., 2014: Inter- and intra- annual dynamics of height increment in young beech and spruce stands in relation to tree size and weather conditions. Lesnícky časopis - Forestry Journal 60:51-59.

  • Kurjak, D., Střelcová, K., Ditmarová, Ľ., Priwitzer, T., Kmet’, J., Homolák, M., Pichler, V., 2012: Physiological response of irrigated and non-irrigated Norway spruce trees as a consequence of drought in field conditions. European Journal of Forest Research 131:1737-1746.

  • Kuster, T. M., Arend, M., Bleuler, P., Günthardt-Goerg, M. S., Schulin, R., 2013: Water regime and growth of young oak stands subjected to air-warming and drought on two different forest soils in a model ecosystem experiment. Plant Biology (Stuttg) 15 (Suppl 1):138-147.

  • Leuschner, C., Backes, K., Hertel, D., Schipka, F., 2001: Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. Forest Ecology and Management 149:33-46.

  • Leuzinger, S., Zotz, G., Asshoff, R., Korner, CH., 2005: Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiology 25:641-650.

  • Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J. et al., 2010: Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 259:698-709.

  • MacKay, S. L., Arain, M. A., Khomik, M., Brodeur, J. J., Schumacher, J., Hartmann, H. et al., 2012: The impact of induced drought on transpiration and growth in a temperate pine plantation forest. Hydrological Processes 26:1779-1791.

  • Mátyás, C., Božic, G., Gömöry, D., Ivankovic, M., Rasztovits, E., 2009: Juvenile growth response of European Beech (Fagus sylvatica L.) to sudden change of climatic environment in SE European trials. iForests, Florence 2:213-220.

  • Matyssek, R., Wieser, G., Patzner, K., Blaschke, H., Häberle, K.H., 2009: Transpiration of forest trees and stands at different altitude: consistencies rather than contrasts? European Journal of Forest Research 128:579-596.

  • Michelot, A., Bréda, N., Damesin, C., Dufrêne, E., 2012: Differing growth responses to climatic variations and soil water deficits of Fagus sylvatica, Quercus petraea and Pinus sylvestris in a temperate forest. Forest Ecology and Management 265:161-171.

  • Nadezdhina, N., Urban, J., Čermák, J., Nadezhdin, V., Kantor, P., 2014: Comparative study of long-term water uptake of Norway spruce and Douglas-fir in Moravian upland. Jornal of Hydrology and Hydromechanics 62:1-6.

  • Oren, R., Sperry, J. S., Katul, G. G., Pataki, D. E., Ewers, B. E., Phillips, N. et al., 1999: Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell and Environment 22:1515-1526.

  • Penman, H. L., 1948: Natural evaporation from open water, bare soil, and grass. Proceedings of the Royal Society London Ser A 193:120-146.

  • Peñuelas, J., Hunt, J. M., Ogaya, R., Jump, A. S., 2008: Twentieth century changes of tree-ring δ13c at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes. Global Change Biology 14:1076-1088.

  • Pfeffer, W., 1900: The Physiology of Plants, a Treatise upon the Metabolism and Sources of Energy in Plants. Translated by A. J. Ewart. Vol. I. 632 p. Oxford, 1900. Vol. II, 296 p. Oxford, 1906. Vol. III. 451 p. Oxford, 1906.

  • Pokorný, R., Slípková, R., Havránková, K., Pavelka, M., 2012: Ecosystem water use efficiency of Norway spruce monoculture from eddy-covariance and ecophysiological measurements. Acta Horticulturae (ISHS) 951:301-307.

  • Pretzsch, H., Schütze, G., Uhl, E., 2013: Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biology (Stuttg) 15:483-495.

  • Priwitzer, T., Kurjak, D., Kmeť, J., Sitková, Z., Leštianska, A., 2014: Photosynthetic response of European beech to atmospheric and soil drought. Lesnícky časopis - Forestry Journal 60:31-37.

  • Rose, L., Leuschner, C., Köckemann, B., Buschmann, H., 2009: Are marginal beech (Fagus sylvatica L.) provenances a source for drought tolerant ecotypes? European Journal of Forest Research 128:335-343.

  • Schipka, F., Heimann, J., Leuschner, C., 2005: Regional variation in canopy transpiration of Central European beech forests. Oecologia 143:260-270.

  • Schleppi, P., Conedera, M., Sedivy, I., Thimonier, A., 2007: Correcting non-linearity and slope effects in the estimation of the leaf area index of forests from hemispherical photographs. Agricultural and Forest Meteorology 144:236-242.

  • Silva, D. E., Rezende Mazzella, P., Legay, M., Corcket, E., Dupouey, J. L., 2012: Does natural regeneration determine the limit of European beech distribution under climatic stress? Forest Ecology and Management 266:263-272.

  • StatSoft, Inc., 2011: STATISTICA (data analysis software system), version 10. Available at: .

  • Stojanović, D. B., Kržič, A., Matović, B., Orlović, S., Duputie, A., Djurdjević, V. et al., 2013: Prediction of the European beech (Fagus sylvatica L.) Xeric limit using a regional climate model: An example from southeast Europe. Agricultural and Forest Meteorology 176:94-103.

  • Střelcová, K., Kurjak, D., Leštianska, A., Kovalčíková, D., Ditmarová, Ľ., Škvarenina, J. et al., 2013: Differences in transpiration of Norway spruce drought stressed trees and trees well supplied with water. Biologia 68:1118-1122.

  • Urban, J., Bednářová, E., Plichta, R., Kučera, J., 2013: Linking phenological data to ecophysiology of European beech. Acta Horticulturae (ISHS) 991:293-299.

  • Urban, J., Gebauer, R., Nadezhdina, N., Čermák, J., 2012: Transpiration and stomatal conductance of mistletoe (Loranthus europaeus) and its host plant, downy oak (Quercus pubescens). Biologia 67:917-926.

  • Vieira, J., Rossi, S., Campelo, F., Freitas, H., Nabais, C., 2013: Seasonal and daily cycles of stem radial variation of Pinus pinaster in a drought-prone environment. Agricultural and Forest Meteorology 180:173-181.

  • von Wühlisch, G., 2008: EUFORGEN Technical Guidelines for genetic conservation and use for European beech (Fagus sylvatica). Bioversity International, Rome, Italy. 6 p.

  • Weber, P., Bugmann, H., Pluess, A. R., Walthert, L., Rigling, A., 2013: Drought response and changing mean sensitivity of European beech close to the dry distribution limit. Trees 27:171-181.

  • Williams, A. P., Allen, C. D., MacAlady, A. K., Griffin, D., Woodhouse, C. A., Meko, D. M. et al., 2013: Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change 3:292-297.

  • Zhao, J., Hartmann, H., Trumbore, S. E., Ziegler, W., Zhang, Y., 2013: High temperature causes negative whole-plant carbon balance under mild drought. New Phytologist 200:330-339.

  • Zweifel, R., Eugster, W., Etzold, S., Dobbertin, M., Buchmann, N., Häsler, R., 2010: Link between continuous stem radius changes and net ecosystem productivity of a subalpine Norway spruce forest in the Swiss Alps. The New Phytologist 187:819-830.

  • Zweifel, R., Rigling, A., Dobbertin, M., 2009: Species-specific stomatal response of trees to drought - a link to vegetation dynamics? Journal of Vegetation Science 20:442-454.

Central European Forestry Journal

The Journal of National Forest Centre – Forest Research Institute Zvolen

Journal Information


CiteScore 2016: 0.56

SCImago Journal Rank (SJR) 2016: 0.230
Source Normalized Impact per Paper (SNIP) 2016: 0.454

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 10
PDF Downloads 3 3 3