Glioblastoma Unique Features Drive the Ways for Innovative Therapies in the Trunk-branch Era

Open access


Glioblastoma multiforme is a solid tumor with particular aspects due to its organ of origin and its development modalities. The brain is very sensitive to oxygen and glucose deprivation and it is the only organ that cannot be either transplanted or entirely removed. Furthermore, many clues and recent indirect experimental evidence indicate that the micro-infiltration of the whole brain parenchyma occurs in very early stages of tumor bulk growth or likely even before. As a consequence, the primary glioblastoma (IDH-wildtype, WHO 2016) is the only tumor where the malignant (i.e. distantly infiltrating the organ of origin) and deadly (i.e. leading cause to patient’s death) phases coincide and overlap in one single phase of its natural history. To date, the prognosis of optimally treated glioblastoma patients remains dismal despite recent fundamental progress in neurosurgical techniques which are enabling better maximal safe resection and survival outcome. Intratumor variegated heterogeneity of glioblastoma bulk due to trunk-branch evolution and very early micro-infiltration and settlement of neoplastic cells in the entire brain parenchyma are the reasons for resistance to current therapeutic treatments. With the aim of future innovative and effective therapies, this paper deals with the unique glioblastoma features, the appropriate research methods as well as the strategies to follow to overcome current causes of resistance.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Anderson K Lutz C van Delft FW et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 2011;469(7330):356-61.

  • 2. Gerlinger M Rowan AJ Horswell S et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012;366(10):883-92.

  • 3. Yachida S Jones S Bozic I et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010;467(7319):1114-7.

  • 4. Wu X Northcott PA Dubuc A et al. Clonal selection drives clonal divergence of metastatic medulloblastoma. Nature 2012;482:529-33.

  • 5. Sottoriva A Spiteri I Piccirillo SG et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA 2013;110:4009-14.

  • 6. Swanton C. Intratumor heterogeneity: evolution through space and time. Cancer Res 2012;72(19): 4875-82.

  • 7. Greaves M Maley CC. Clonal evolution in cancer. Nature 2012;481(7381):306-13.

  • 8. Yates LR Campbell PJ. Evolution of the cancer genome. Nat Rev Genet 2012;13(11):795-806.

  • 9. Marusyk A Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 2010;1805(1):105-17.

  • 10. Nowell PC. The clonal evolution of tumor cell populations. Science 1976;194(4260):23-8.

  • 11. Yap TA Gerlinger M Futreal PA et al. Intratumor heterogeneity: seeing the wood for the trees. Sci Transl Medicine 2012;4(127):127ps10.

  • 12. Navin N Krasnitz A Rodgers L et al. Inferring tumor progression from genomic heterogeneity. Genome Res 2010;20:68-80.

  • 13. Navin N Kendall J Troge J et al. Tumor evolution inferred by single-cell sequencing. Nature 2011;472:90-4.

  • 14. Bonnet D Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3(7):730-7.

  • 15. Sing SK Hawkins C Clarke ID et al Identification of human brain tumour initiating cells. Nature 2004;432:396-401.

  • 16. Lathia JD Mack SC Mulkearns-Huber EE et al. Cancer stem cells in glioblastoma. Genes Dev 2015;29:1203-17.

  • 17. Ricci-Vitiani L Lombardi DG Pilozzi E et al. Identification and expansion of human colon-cancerinitiating cells. Nature 2007;445:111-5.

  • 18. Collins AT Berry PA Hyde C et al. Prospective identification of tumorigenic prostate cancer cells. Cancer Res 2005;65(23):10946-51.

  • 19. Al-Hajj M Wicha MS Benito-Hernandez A et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100(7):3983-8.

  • 20. Leon G MacDonagh L Finn SP et al. Cancer stem cells in drug resistant lung cancer: Targeting cell surface markers and signaling pathways. Pharmacol Ther 2016;158:71-90.

  • 21. Shimakawa M Otha Y Nishikori S et al. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature 2017;545:187-92.

  • 22. Chen J Li Y Yu TS et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 2012;488:522-6.

  • 23. Driessens G Beck B Caauwe B et al. Defining the mode of tumor growth by clonal analysis. Nature 2012;488:527-30.

  • 24. Greaves M. Cancer stem cells as ‘units of selection’. Evol Appl 2013;6:102-8.

  • 25. Piccirillo SGM Colman S Potter NE et al. Genetic and functional diversity of propagating cells in glioblastoma. Stem Cell Reports 2015;4:1-9.

  • 26. Vaupel P. The role of hypoxia-induced factors in tumor progression. The Oncologist 2004;9(suppl5): 10-7.

  • 27. Vaupel P. Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. The Oncologist 2008;13(suppl3):21-6.

  • 28. Griguer CE Oliva C Gillespie GY. Glucose metabolism heterogeneity in human and mouse malignant glioma cell lines. J Neurooncol 2005;74:123-33.

  • 29. Griguer CE Oliva CR Gobin E et al. CD133 is a marker of bioenergetic stress in human glioma. PLosS ONE 2008;3(11):e3655.

  • 30. Turcotte ML Parliament M Franko A et al. Variation in mitochondrial function in hypoxia-sensitive and hypoxia-tolerant human glioma cells. Br J Cancer 2002;86:619-24.

  • 31. Bayin NS Frenster JD Sen R et al. Notch signaling regulates metabolic heterogeneity in glioblastoma stem cells. Oncotarget 2017;8(39):64932-53.

  • 32. Li Z Bao S Wu Q et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 2009;15:501-13.

  • 33. Seidel S Garbalov BK Wirta V et al. A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2α. Brain 2010;133:983-95.

  • 34. Brognaro E. A theory and a model to understand glioblastoma development both in the bulk and in the microinfiltrated brain parenchyma. Neurochem Res 2011;36(11):2145-54.

  • 35. Brognaro E. “The development tumor model” to study and monitor the entire progression of both primary and metastatic tumors. Tumor Biol 2014;35(3):2219-30.

  • 36. Evans SM Judy KD Dunphy I et al. Hypoxia is important in the biology and aggression of human brain tumors. Clin Cancer Res 2004;10:8177-84.

  • 37. Evans SM Judy KD Dunphy I et al. Comparative measurements of hypoxia in human brain tumors using needle electrodes and EF5 binding. Cancer Res 2004;64:1886-92.

  • 38. McCord AM Jamal M Shankavarum U et al. Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro. Mol Cancer Res 2009;7:489-97.

  • 39. Flavahan WA Wu Q Hitomi M et al. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat Neurosci 2013;16:1373-82.

  • 40. Beckner ME Gobbel GT Abounader R et al. Glycolytic glioma cells with active glycogen synthase are sensitive to PTEN and inhibitors of PI3K and gluconeogenesis. Lab Invest 2005;85:1457-70.

  • 41. Ghajar C. Metastasis prevention by targeting the dormant niche. Nature 2015;15:238-47.

  • 42. Talukdar S Emdad L Das SK et al. Evolving strategies for therapeutically targeting cancer stem cells. Adv Cancer Res 2016;131:159-91.

  • 43. Galli R Binda E Orfanelli U et al. Isolation and characterization of tumorigenic stem-like neural precursors from human glioblastoma. Cancer Res 2004;64:7011-21.

  • 44. Pfenninger CV Roschupkina T Hertwig F et al. CD133 is not present on neurogenic astrocytes in the adult subventricular zone but on embryonic neural stem cells ependymal cells and glioblastoma cells. Cancer Res 2007;67:5727-36.

  • 45. Coskun V Hu H Blanchi B et al. CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Procl Natl Acad Sci USA 2008;105(3):1026-31.

  • 46. Beier D Hau P Proescholdt M et al. CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 2007;445:111-5.

  • 47. Stupp R Mason WP van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005;352: 997-1003.

  • 48. Louis DN Perry A Reifenberger G et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016;131(6):803-20.

  • 49. Cuddapah VA Robel S Watkins S et al. A neurocentric perspective on glioma invasion. Nat Rev Neurosci 2014;15:455-65.

  • 50. Mikkelsen T Bjerkvig R Lærum OD et al. Brain tumor invasion. New York: Wiley-Liss; 1998.

  • 51. Giese A Bjerkvig R Berens ME et al. Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 2003;21:1624-36.

  • 52. Radbruch A Lutz K Wiestler B et al. Relevance of T2 signal changes in the assessment of progression of glioblastoma according to the Response Assessment in Neurooncology Criteria. Neuro Oncol 2012;14(2):222-9.

  • 53. Jbabdi S Mandonnet E Duffau H et al. Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magnet Reson Med 2005;54:616-24.

  • 54. Lim DA Cha S Mayo MC et al. Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro Oncol 2007;984:424-9.

  • 55. Chaichana KL Quinones-Hinojosa A. The need to continually redefine the goals of surgery for glioblastoma. Neuro Oncol 2014;16(4):611-2.

  • 56. Dandy WE. Removal of right cerebral hemisphere for certain tumors with hemiplegia. JAMA 1928;90(11):823-5.

  • 57. Gardner WJ. Removal of the right cerebral hemisphere for infiltrating glioma. JAMA 1933;101(11):823-6.

  • 58. Patil CG Yi A Elramsisy A et al. Prognosis of patients with multifocal glioblastoma: a case-control study. J Neurosurg 2012;117(4):705-11.

  • 59. Kim H Zheng S Amini SS et al. Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res 2015;25:316-27.

  • 60. Kim J Lee IH Cho HJ et al. Spatiotemporal evolution of the primary glioblastoma genome. Cancer Cell 2015;28(3):318-28.

  • 61. De Angelis LM Mellinghoff IK. Virchow 2011 or how to ID(H) human glioblastonma. J Clin Oncol 2011;29(34):4473-4.

  • 62. Scherer HJ. A critical review: the pathology of cerebral gliomas. J Neurol Neurosurg Psychiatry 1940;3(2):147-77.

  • 63. Pfeiffer J Kleihues P. Hans-Joachim Scherer (1906-1945) pioneer in glioma research. Brain Pathol 1999;9(2):241-5.

  • 64. Stoyanov GS Dzhenkov DL. On the concepts and history of glioblastoma multiforme morphology genetics and epigenetics. Folia Medica 2018;(60)1: 48-66.

  • 65. Orringer D Lau D Khatri S et al. Extent of resection in patients with glioblastoma: limiting factors perception of resectability and effect on survival. J Neurosurg 2012;117(5):851-9.

  • 66. Senft C Bink A Franz K et al. Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised controlled trial. Lancet Oncol 2011;12(11):997-1003.

  • 67. Schucht P Beck J Abu-Isa J et al. Gross total resection rates in contemporary glioblastoma surgery: results of an institutional protocol combining 5-ALA intraoperative fluorescence imaging and brain mapping. Neurosurgery 2012;71(5):927-35.

  • 68. Kim SK Choi SH Kim YH et al. Impact of fluorescence- guided surgery on the improvement of clinical outcomes in glioblastoma patients. Neuro Oncol Practice 2014;1(3):81-5.

  • 69. Della Puppa A Ciccarino P Lombardi G et al. 5-aminolevulinic acid fluorescence in high grade glioma surgery: surgical outcome intraoperative findings and fluorescence patterns. Biomed Res Int 2014;2014:232561.

  • 70. Valdés PA Kim A Brantsch M et al. δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence- guided resection to identify regions of increasing malignancy. Neuro Oncol 2011;13(8):846-56.

  • 71. Martirasyan NL Cavalcanti DD Eschbacher JM et al. Use of in vivo near-infrared laser confocal endomicroscopy with indocyanine green to detect the boundary of infiltrative tumor. J Neurosurg 2011;115(6):1131-8.

  • 72. Verhaak RG Hoadley KA Purdom E et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA IDH1 EGFR and NF1. Cancer Cell 2010;17:98-110.

  • 73. Ledur PF Onzi GR Zong H et al. Culture conditions defining glioblastoma cells behavior: what is the impact for novel discoveries? Oncotarget 2017;8(40):69185-97.

  • 74. Gerlinger M Swanton C. How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Brit J of Cancer 2010;103:1139-43.

  • 75. Wang J Cazzato E Ladewig E et al. Clonal evolution of glioblastoma under therapy. Nat Genet 2016;48(7):768-76.

  • 76. Polivka J Jr Polivka J Holubec L et al. Advances in experimental targeted therapy and immunotherapy for patients with glioblastoma multiforme. Anticancer Res 2017;37(1):21-33.

  • 77. Koppelkamm A Vennemann B Lutz-Bonengel S et al. RNA integrity in post-mortem samples: influencing parameters and implications on RT-qPCR assays. Int J Legal Med 2011;125(4):573-58.

  • 78. Sköld K Svennson M Norrman M et al. The significance of biochemical and molecular sample integrity in brain proteomics and peptidomics: stathmin 2-20 and peptides as sample quality indicators. Proteomics 2007;7(24):4445-56.

  • 79. Barrachina M Ferrer I. DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain. J Neuropathol Exp Neurol 2009;68:880-91.

  • 80. Shen Q Wang Y Kokavay E et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 2008;3:289-300.

  • 81. Calabrese C Poppleton H Kocak M et al. A perivascular niche for brain tumor stem cells. Cancer Cell 2007;11:69-82.

  • 82. Diez Valle R Solis ST Gastearena MAI et al. Surgery guided by 5-aminolevulinic fluorescence in glioblastoma: volumetric analysis of extent of resection in single-center experience. J Neurooncol 2011;102:105-13.

  • 83. Lemée J-M Clavreul A Menei P. Intratumoral heterogeneity: don’t forget the peritumoral brain zone. Neuro-Oncol 2015;17(10):1322-32.

  • 84. Lemée J-M Clavreul A Aubry M et al. Characterizing the peritumoral brain zone in glioblastoma: a multidisciplinary analysis. J Neurooncol 2015;122:53-61.

  • 85. Ruiz-Ontaňon P Orgaz JL Aldaz B et al. Cellular plasticity confers migratory and invasive advantages to a population of glioblastoma-initiating cells that infiltrate peritumoral tissue. Stem Cells 2013;31:1075-85.

  • 86. Fatoo A Nanaszko MJ Allen BB et al. Understanding the role of tumor stem cells in glioblastoma multiforme: a review article. J Neurooncol 2011;103:397-408.

  • 87. Bajaj J Zimdahl B Reya T. Fearful symmetry: subversion of asymmetric division in cancer development and progression. Cancer Res 2015;75(5):792-7.

  • 88. Mukherjee S Brat DJ. Molecular programs underlying asymmetric stem cell division and their disruption in malignancy. Results Probl Cell Differ 2017;61:401-21.

Journal information
Impact Factor

CiteScore 2018: 0.587

SCImago Journal Rank (SJR) 2018: 0.311

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 145 145 11
PDF Downloads 112 112 6