A Review on DNA Repair Inhibition by PARP Inhibitors in Cancer Therapy

Open access


The DNA repair process protects the cells from DNA damaging agent by multiple pathways. Majority of the cancer therapy cause DNA damage which leads to apoptosis. The cell has natural ability to repair this damage which ultimately leads to development of resistance of drugs. The key enzymes involved in DNA repair process are poly(ADP-ribose) (PAR) and poly(ADP-ribose) polymerases (PARP). Tumor cells repair their defective gene via defective homologues recombination (HR) in the presence of enzyme PARP. PARP inhibitors inhibit the enzyme poly(ADP-ribose) polymerases (PARPs) which lead to apoptosis of cancer cells. Current clinical data shows the role of PARP inhibitors is not restricted to BRCA mutations but also effective in HR dysfunctions related tumors. Therefore, investigation in this area could be very helpful for future therapy of cancer. This review gives detail information on the role of PARP in DNA damage repair, the role of PARP inhibitors and chemistry of currently available PARP inhibitors.

1. Martin NM. DNA repair inhibition and cancer therapy. J Photochem Photobiol B 2001;63(1):162-70.

2. Piskunova TS, Yurova MN, Ovsyannikov AI, et al. Deficiency in poly(ADP-ribose) polymerase-1 (PARP-1) accelerates aging and spontaneous carcinogenesis in mice. Curr Gerontol Geriatr Res 2008;2008:754190.

3. Espinoza LA, Smulson ME, Chen Z. Prolonged poly(ADP-ribose) polymerase-1 activity regulates JP-8-induced sustained cytokine expression in alveolar macrophages. Free Radic Biol Med 2007;42(9):1430-40.

4. Zerfaoui M, Suzuki Y, Naura AS, et al. Nuclear translocation of p65 NF-κB is sufficient for VCAM-1, but not ICAM-1, expression in TNF-stimulated smooth muscle cells: Differential requirement for PARP-1 expression and interaction. Cell Signal 2008;20(1):186-94.

5. Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005;434(7035):917-21.

6. Patel A, Kaufmann SH. Development of PARP inhibitors: an unfinished story. Oncology 2010;24(1):66-68.

7. Mendes-Pereira AM, Martin SA, Brough R, et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med 2009;1(6-7):315-22.

8. Graziani G, Szabó C. Clinical perspectives of PARP inhibitors. Pharmacol Res 2005;52(1):109-18.

9. Ame JC, Spenlehauer C, de Murcia G. The PARP superfamily. Bioessays 2004;26(8):882-93.

10. Otto H, Reche PA, Bazan F, et al. In silico characterization of the family of PARP-like poly(ADP-ribosyl) transferases (pARTs). BMC Genomics 2005;6(1):139.

11. Isabelle M, Moreel X, Gagné J-P, et al. Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry. Proteome Sci 2010;8(1):22.

12. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001;411(6835):366-74.

13. Lindahl T. Instability and decay of the primary structure of DNA. Nature 1993;362(6422):709-15.

14. Chambon P, Weill J, Mandel P. Nicotinamide mono-nucleotide activation of a new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun 1963;11(1):39-43.

15. El Khamisy SF, Masutani M, Suzuki H, et al. A requirement for PARP 1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res 2003;31(19):5526-33.

16. D’Amours D, Desnoyers S, D’Silva I, et al. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 1999;342(2):249-68.

17. Lindahl T, Satoh MS, Poirier GG, et al. Post-translational modification of poly (ADP-ribose) polymerase induced by DNA strand breaks. Trends in biochemical sciences 1995;20(10):405-11.

18. Flohr C, Bürkle A, Radicella JP, et al. Poly(ADP ribosyl)ation accelerates DNA repair in a pathway dependent on Cockayne syndrome B protein. Nucleic Acids Res 2003;31(18):5332-7.

19. Tong W, Yang Y, Cao W, et al. Poly(ADP-ri-bose) polymerase-1 plays a role in suppressing mammary tumourigenesis in mice. Oncogene 2007;26(26):3857-67.

20. Conde C, Mark M, Oliver FJ, et al. Loss of poly(ADP ribose) polymerase 1 causes increased tumour latency in p53 deficient mice. EMBO J 2001;20(13):3535-43.

21. Molinete M, Vermeulen W, Bürkle A, et al. Overproduction of the poly(ADP-ribose) polymerase DNA-binding domain blocks alkylation-induced DNA repair synthesis in mammalian cells. EMBO J 1993;12(5):2109.

22. Yang Y-G, Cortes U, Patnaik S, et al. Ablation of PARP-1 does not interfere with the repair of DNA double-strand breaks, but compromises the reactivation of stalled replication forks. Oncogene 2004;23(21):3872-82.

23. Schultz N, Lopez E, Saleh Gohari N, et al. Poly(ADP ribose) polymerase (PARP 1) has a controlling role in homologous recombination. Nucleic Acids Res 2003;31(17):4959-64.

24. Lord CJ, Ashworth A. Targeted therapy for cancer using PARP inhibitors. Curr Opin Pharmacol 2008;8(4):363-9.

25. de Murcia JM, Ricoul M, Tartier L, et al. Functional interaction between PARP 1 and PARP 2 in chromosome stability and embryonic development in mouse. EMBO J 2003;22(9):2255-63.

26. Ruf A, De Murcia JM, De Murcia G, et al. Structure of the catalytic fragment of poly(AD-ribose) polymerase from chicken. Proceedings of the National Academy of Sciences 1996;93(15):7481-5.

27. Suto M, Turner W, Arundel-Suto C, et al. Dihydroisoquinolinones: the design and synthesis of a new series of potent inhibitors of poly(ADP-ribose) polymerase. Anticancer Drug Des 1991;6(2):107-17.

28. Griffin RJ, Srinivasan S, Bowman K, et al. Resistance-modifying agents. 5. Synthesis and biological properties of quinazolinone inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP). J Med Chem 1998;41(26):5247-56.

29. Penning TD, Zhu G-D, Gandhi VB, et al. Discovery and SAR of 2-(1-propylpiperidin-4-yl)-1H-benzimidazole-4-carboxamide: a potent inhibitor of poly(ADP-ribose) polymerase (PARP) for the treatment of cancer. Bioorg Med Chem 2008;16(14):6965-75.

30. Zhu G-D, Gandhi VB, Gong J, et al. Synthesis and SAR of novel, potent and orally bioavailable benzimidazole inhibitors of poly(ADP-ribose) polymerase (PARP) with a quaternary methylene-amino substituent. Bioorg Med Chem Lett 2008;18(14):3955-8.

31. Scarpelli R, Boueres JK, Cerretani M, et al. Synthesis and biological evaluation of substituted 2-phenyl-2H-indazole-7-carboxamides as potent poly(ADP-ribose) polymerase (PARP) inhibitors. Bioorg Med Chem Lett. 2010;20(2):488-92.

32. Zhu Q, Wang X, Chu Z, et al. Design, synthesis and biological evaluation of novel imidazo [4, 5-c] pyri-dinecarboxamide derivatives as PARP-1 inhibitors. Bioorg Med Chem Lett 2013;23(7):1993-6.

33. Abdullah I, Chee CF, Lee Y-K, et al. Benzimidazole derivatives as potential dual inhibitors for PARP-1 and DHODH. Bioorg Med Chem 2015;23(15):4669-80.

34. Tutt A, Robson M, Garber J, et al. Phase II trial of the oral PARP inhibitor olaparib in BRCA-deficient advanced breast cancer. ASCO Annual Meeting Proceedings; 2009.

35. Kummar S, Kinders R, Gutierrez ME, et al. Phase 0 clinical trial of the poly(ADP-ribose) polymerase inhibitor ABT-888 in patients with advanced malignancies. J Clin Oncol 2009;27(16):2705-11.

36. Jones P, Altamura S, Boueres J, et al. Discovery of 2-{4-[(3 S)-Piperidin-3-yl] phenyl}-2 H-indazole-7-carboxamide (MK-4827): a novel oral poly(ADP-ribose) polymerase (PARP) inhibitor efficacious in BRCA-1 and-2 mutant tumors. J Med Chem 2009;52(22):7170-85.

37. Penning TD. Small-molecule PARP modulators-current status and future therapeutic potential. Curr Opin Drug Discov Devel 2010;13(5):577-86.

38. Plummer R, Jones C, Middleton M, et al. Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res 2008;14(23):7917-23.

39. Mahany Jr J, Lewis N, Heath E, et al. A phase IB study evaluating BSI-201 in combination with chemotherapy in subjects with advanced solid tumors. ASCO Annual Meeting Proceedings; 2008.

40. Bedikian AY, Papadopoulos NE, Kim KB, et al. A phase IB trial of intravenous INO-1001 plus oral temozolomide in subjects with unresectable stage-III or IV melanoma. Cancer Invest 2009;27(7):756-63.

41. Fong PC, Boss DS, Yap TA, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009;361(2):123-34.

42. Tutt A, Robson M, Garber JE, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 2010;376(9737):235-44.

43. Kaufman B, Shapira-Frommer R, Schmutzler RK, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 2015;33(3):244-50.

44. Gelmon KA, Tischkowitz M, Mackay H, et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol 2011;12(9):852-61.

45. Kaye SB, Lubinski J, Matulonis U, et al. Phase II, open-label, randomized, multicenter study comparing the efficacy and safety of olaparib, a poly(ADP-ribose) polymerase inhibitor, and pegylated liposomal doxorubicin in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer. J Clin Oncol 2012;30(4):372-9.

46. Puhalla S, Beumer JH, Pahuja S, et al. Final results of a phase 1 study of single-agent veliparib (V) in patients (pts) with either BRCA1/2-mutated cancer (BRCA+), platinum-refractory ovarian, or basal-like breast cancer (BRCA-wt). ASCO Annual Meeting Proceedings; 2014.

47. De Bono JS, Mina LA, Gonzalez M, et al. First-inhuman trial of novel oral PARP inhibitor BMN 673 in patients with solid tumors. ASCO Annual Meeting Proceedings; 2013.

48. Wainberg ZA, Rafii S, Ramanathan RK, et al. Safety and antitumor activity of the PARP inhibitor BMN673 in a phase 1 trial recruiting metastatic small-cell lung cancer (SCLC) and germline BRCA-mutation carrier cancer patients. ASCO Annual Meeting Proceedings; 2014.

49. Sandhu SK, Schelman WR, Wilding G, et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol 2013;14(9):882-92.

50. Kristeleit RS, Burris HA, LoRusso P, et al. Phase 1/2 study of oral rucaparib: Final phase 1 results. ASCO Annual Meeting Proceedings; 2014.

Folia Medica

The Journal of Medical University-Plovdiv

Journal Information

CiteScore 2017: 0.54

SCImago Journal Rank (SJR) 2017: 0.206


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 739 739 74
PDF Downloads 498 498 52