Bone And Soft Tissue Changes In Patients With Spinal Cord Injury And Multiple Sclerosis

Open access


In patients with spinal cord injury and multiple sclerosis, deterioration of body composition (changes in bone, fat and muscle mass) is associated with increased risk for diseases such as coronary artery heart disease, non-insulin dependent diabetes mellitus, lipid metabolism abnormalities, and osteoporotic fractures in these patients. Immobility leads to a changing pattern of loading in the paralyzed areas, and secondary alteration in structure. However, bone and soft tissue changes in these patients are usually neglected. The purpose of this article is to update on the pathophysiological mechanisms leading to bone and soft tissue changes, and to increase the awareness of the treating physicians with respect to bone, muscle and fat loss and their consequences aiming to obtain measures to prevent bone and soft tissue loss in these patients.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Spungen AM Adkins RH Stewart CA et al. Factors influencing body composition in persons with spinal cord injury: a cross-sectional study. J Appl Physiol 2003;95:2398-407.

  • 2. Lambert CP Archer RL Evans WJ. Body composition in ambulatory women with multiple sclerosis. Arch Phys Med Rehabil 2002;83:1559-61.

  • 3. Dionyssiotis Y. Body Composition in Disabilities of Central Nervous System. In: El Maghraoui A editor. Dual Energy X-Ray Absorptiometry. Rijeka: InTech; 2012:75-94.

  • 4. Smeltzer SC Zimmerman V Capriotti T. Osteoporosis risk and low bone mineral density in women with physical disabilities. Arch Phys Med Rehabil 2005;86:582-6.

  • 5. Olgiati R Burgunder JM Mumenthaler M. Increased energy cost of walking in multiple sclerosis: effect of spasticity ataxia and weakness. Arch Phys Med Rehabil 1988;69:846-9.

  • 6. Dionyssiotis Y. Body composition in multiple sclerosis. Hippokratia 2013;17:7-11.

  • 7. Dionyssiotis Y Petropoulou K Rapidi CA et al. Body composition in paraplegic men. J Clin Densitometry 2008;11:437-43.

  • 8. Maggioni M Bertoli S Margonato V Merati G Veicsteinas A Testolin G. Body composition assessment in spinal cord injury subjects. Acta Diabetol 2003;40 Suppl 1:S183-6.

  • 9. Gupta N White KT Sandford PR. Body mass index in spinal cord injury - a retrospective study. Spinal Cord 2006;44:92-4.

  • 10. McDonald CM Abresch-Meyer AL Nelson MD Widman LM. Body mass index and body composition measures by dual x-ray absorptiometry in patients aged 10 to 21 years with spinal cord injury. J Spinal Cord Med 2007;30:S97-104.

  • 11. Maimoun L Fattal C Micallef JP Peruchon E Rabischong P. Bone loss in spinal cord-injured patients: from physiopathology to therapy. Spinal Cord 2006;44:203-10.

  • 12. Sioka C Fotopoulos A Georgiou A et al. Body composition in ambulatory patients with multiple sclerosis. J Clin Densitom 2011;14:465-70.

  • 13. Munger KL Chitnis T Ascherio A. Body size and risk of MS in two cohorts of US women. Neurology 2009;10:1543-50.

  • 14. Van Der Ploeg GE Withers RT Laforgia J. Percent body fat via DEXA: comparison with a four-compartment model. J Appl Physiol 2003;94:499-506.

  • 15. Modlesky CM Bickel CS Slade JM Meyer RA Cureton KJ Dudley GA. Assessment of skeletal muscle mass in men with spinal cord injury using dual-energy X-ray absorptiometry and magnetic resonance imaging. J Appl Physiol 2004;96:561-5.

  • 16. LaForgia J Dollman J Dale MJ Withers RT Hill AM. Validation of DXA body composition estimates in obese men and women. Obesity (Silver Spring) 2009;17:821-6.

  • 17. Castro MJ Apple DF Jr Hillegass EA Dudley GA. Influence of complete spinal cord injury on skeletal muscle cross-sectional area within the first 6 months of injury. Eur J Appl Physiol 1999;80:373-8.

  • 18. Dionyssiotis Y. Spinal cord injury-related bone impairment and fractures: an update on epidemiology and physiopathological mechanisms. J Musculoskelet Neuronal Interact 2011;11:257-65.

  • 19. Dionyssiotis Y. Bone loss and fractures in multiple sclerosis: focus on epidemiologic and physiopathological features. Int J Gen Med 2011;4:505-9.

  • 20. Jiang SD Dai LY Jiang LS. Osteoporosis after spinal cord injury. Osteoporos Int 2006;17:180-92.

  • 21. Bloomfield SA. Changes in musculoskeletal structure and function with prolonged bed rest. Med Sci Sports Exerc 1997;29:197-206.

  • 22. Takata S Yasui N. Disuse osteoporosis. J Med Invest 2001;48:147-56.

  • 23. Cosman F Nieves J Komar L et al. Fracture history and bone loss in patients with MS. Neurology 1998;51:1161-5.

  • 24. Morse LR Sudhakar S Danilack V et al. Association between sclerostin and bone density in chronic spinal cord injury. J Bone Miner Res 2012;27:352-9.

  • 25. Zhao W Liu Y Cahill CM et al. The role of T cells in osteoporosis an update. Int J Clin Exp Pathol 2009;20:544-52.

  • 26. Kurban S Akpinar Z Mehmetoglu I. Receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin levels in multiple sclerosis. Mult Scler 2008;14:431-2.

  • 27. Canalis E Mazziotti G Giustina A et al. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int 2007;18:1319-28.

  • 28. Zorzon M Zivadinov R Locatelli L et al. Long-term effects of intravenous high dose methylprednisolone pulses on bone mineral density in patients with multiple sclerosis. Eur J Neurol 2005;12:550-6.

  • 29. Leslie WD Nance PW. Dissociated hip and spine demineralization: a specific finding in spinal cord injury. Arch Phys Med Rehabil 1993;74:960-4.

  • 30. Tsuzuku S Ikegami Y Yabe K. Bone mineral density differences between paraplegic and quadriplegic patients: a cross-sectional study. Spinal Cord 1999;37:358-61.

  • 31. Dionyssiotis Y Lyritis GP Papaioannou N Papagelopoulos P Thomaides T. Influence of neurological level of injury in bones muscles and fat in paraplegia. J Rehabil Res Dev 2009;46:1037-44.

  • 32. Dionyssiotis Y Lyritis GP Mavrogenis AF Papagelopoulos PJ. Factors influencing bone loss in paraplegia. Hippokratia 2011;15:54-9.

  • 33. Eser P Frotzler A Zehnder Y Schiessl H Denoth J. Assessment of anthropometric systemic and lifestyle factors influencing bone status in the legs of spinal cord injured individuals. Osteoporos Int 2005;16:26-34.

  • 34. Löfvenmark I Werhagen L Norrbrink C. Spasticity and bone density after a spinal cord injury. J Rehabil Med 2009;41:1080-4.

  • 35. Scelsi R. Skeletal muscle pathology after spinal cord injury. Basic Appl Myol 2001;11:75-85.

  • 36. Bauman WA Zhong YG Schwartz E. Vitamin D deficiency in veterans with chronic spinal cord injury. Metabolism 1995;44:1612-6.

  • 37. Van Amerongen BM Dijkstra CD Lips P et al. Multiple sclerosis and vitamin D: an update. Eur J Clin Nutr 2004;58:1095-109.

  • 38. Askari S Chao T de Leon RD Won DS. The effect of timing electrical stimulation to robotic-assisted stepping on neuromuscular activity and associated kinematics. J Rehabil Res Dev 2013;50:875-92.

  • 39. Jeon JY Steadward RD Wheeler GD Bell G McCargar L Harber V. Intact sympathetic nervous system is required for leptin effects on resting metabolic rate in people with spinal cord injury. J Clin Endocrinol Metab 2003;88:402-7.

  • 40. Formica CA Cosman F Nieves J Herbert J Lindsay R. Reduced bone mass and fat-free mass in women with multiple sclerosis: effects of ambulatory status and glucocorticoid Use. Calcif Tissue Int 1997;61:129-33.

Journal information
Impact Factor

CiteScore 2018: 0.587

SCImago Journal Rank (SJR) 2018: 0.311

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 524 238 9
PDF Downloads 232 130 3