Application of Chosen Methods of Robust Estimation: Baarda’s and Huber’s in Search for Outliers in the Real Estate Market Modeling

Open access

Abstract

In the article, an attempt was made to compile a dataset which was devoid of outliers, on the example of Cracovian apartment market. Robust estimation was the tool which was used, but only its two methods were considered: Baarda’s and Huber’s. Huber’s method belongs to the so-called active methods which means that it allows to eliminate gross errors during the estimation of the parameters of multiple linear regression where a unit price is called a dependent variable or forecasted one. Baarda’s method is a passive method which is based on statistical tests and allows, after determining the parameters of a multiple linear regression model, to indicate the observations which may be burdened with gross errors. Thus both mentioned algorithms differ from each other substantially. In this publication, Baarda’s and Huber’s methods were compared in the context of their effectiveness for the analyzed dataset, and as tools of preparing the data for further analysis. The results showed that Baarda’s method is more appropriate for the analyzed dataset than Huber’s algorithm, but it does not mean that the active method is worse.

Adamczyk, T. (2017). Application of the Huber and Hampel M-estimation in Real Estate Value Modeling. Geomatics and Environmental Engineering, 1 (11), 15-23. DOI: 10.7494/geom.2017.11.1.15.

Barańska, A. (2007). Dwuetapowy model wyceny nieruchomości. Journal of the Polish Real Estate Scientific Society, 15 (3-4), 187-195.

Barańska, A. (2010). Statystyczne metody analizy i weryfikacji proponowanych algorytmów wyceny nieruchomości. Rozprawy i Monografie. Kraków: Wydawnictwa AGH.

Barańska, A. (2012). Statystyczna weryfikacja modeli wyceny nieruchomości. Journal of the Polish Real Estate Scientific Society, 20 (1), 29-39.

Baarda, W. (1968). A testing procedure for use in geodetic networks. Netherlands Geodetic Commission, 2 (5).

Bitner, A. (2007). Konstrukcja modelu regresji wielorakiej przy wycenie nieruchomości. Acta Scientiarum Polonorum, Administratio Locorum, 6 (4), 59-66.

Doszyń, M., Gnat, S. (2017). Econometric Identification of the Impact of Real Estate Characteristics Based on Predictive and Studentized Residuals. Journal of the Polish Real Estate Scientific Society, 25 (1), 84-92. DOI: 10.1515/remav-2017-0005.

Huber, P.J. (1964). Robust Estimation of a Location Parameter. The Annals of Mathematical Statistics, 35 (1), 73-101.

Huber, P.J. (1981). Robust statistics. New York: John Wiley & Sons.

Kamiński, W. (2003). Z odsieczą połowcom. Surveyor, 101, 28-30.

Isakson, H.R. (1998). The Review of Real Estate Appraisals Using Multiple Regression Analysis. Journal of Real Estate Research, 15 (2), 177-190.

Ligas, M. (2010). Metody statystyczne w wycenie nieruchomości. Journal of the Polish Real Estate Scientific Society, 18 (1), 49-64.

Muszyński, Z., Rybak, J. (2008). Zastosowanie metod estymacji odpornej w obliczeniach nośności granicznej pali. Mining and Geoengineering, 32 (2), 257-265.

Prószyński, W., Kwaśniak, M. (2002). Niezawodność sieci geodezyjnych. Warsaw Polytechnic Publishing House.

Ramsey, J.B. (1969). Tests for Specification Errors in Classical Linear Least-Squares Regression Analysis. Journal of the Royal Statistical Society. Series B (Methodological), 31 (2), 350-371.

Smith, Jr., Everett, V. (2002). Understanding Rasch measurement: Detecting and evaluating the impact of multidimenstionality using item fit statistics and principal component analysis of residuals. Journal of Applied Measurement, 3 (2), 205-231.

Śpiewak, B. (2018). Application of Passive Methods of Robust Estimation: Baarda’s and Pope’s in Real Estate Market Analysis. Journal of the Polish Real Estate Scientific Society, 1 (1), 5-15.

Walesiak, M. (1996). Metody analizy danych marketingowych. Warszawa: PWN.

Folia Oeconomica Stetinensia

The Journal of University of Szczecin

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 65 65 8
PDF Downloads 49 49 6