Forecasting Changes in Stock Prices on the Basis of Patterns Identified with the Use of Data Classification Methods

Open access


The paper develops the concept of harnessing data classification methods to recognize patterns in stock prices. The author defines a formation as a pattern vector describing the financial instrument. Elements of such a vector can be related to the stock price as well as sales volume and other characteristics of the financial instrument. The study uses data concerning selected companies listed on the stock exchange in New York. It takes into account a number of variables that describe the behavior of prices and volume, both in the short and long term. Partitioning around medoids method has been used for data classification (for pattern recognition). An evaluation of the possibility of using certain formations for practical purposes has also been presented.

Aczel, A.D. & Sounderpandian, J. (2008). Complete Business Statistics. Irwin Professional.

Cheong, M.-Y. & Lee, H. (2008). Determining the number of clusters in cluster analysis. Journal of the Korean Statistical Society, 37 (2), 135-143. DOI: 10.1016/j.jkss.2007.10.004.

Appel, G. (2005). Technical Analysis: Power Tools for Active Investors. Financial Times Prentice Hall, Upper Saddle River.

Edwards, R.D. & Magee J. (2001). Technical Analysis of Stock Trends. 8th edition, London− New York−Washington D.C.: St. Lucie Press, Boca Raton.

Fama, E.F. (1970). Efficient capital markets: A review of empirical work. Journal of Finance, 25 (2), 383-417. DOI: 10.1111/j.1540-6261.1970.tb00518.x.

Grabiński, T. (1992). Metody taksonometrii. Kraków: Wydawnictwo Akademii Ekonomicznej w Krakowie.

Hardy, A. (1996). On the number of clusters. Computational Statistics & Data Analysis, 23 (1), 83-96. DOI: 10.1016/S0167-9473(96)00022-9.

Herbin, M., Bonnet, N. & Vautrot, P. (2001). Estimation of the number of clusters and influence zones. Pattern Recognition Letters, 22 (14), 1557-1568. DOI: 10.1016/S0167-8655(01)00103-9.

Jajuga, K. (2007). Podstawy inwestowania na giełdzie papierów wartościowych. Warszawa: Giełda Papierów Wartościowych w Warszawie.

Kaufman, L. & Rousseeuw, P.J. (1987). Clustering by means of Medoids. In: Ed. Y. Dodge, Statistical Data Analysis Based on the L1-Norm and Related Methods (pp. 405-416). North-Holland.

Kolenda, M. (2006). Taksonomia numeryczna. Klasyfikacja, porządkowanie i analiza obiektów wielocechowych. Wrocław: Wydawnictwo Akademii Ekonomicznej we Wrocławiu.

Leigh, W., Paz, N. & Purvis, R. (2002). Market timing: A test of a charting heuristic. Economics Letters, 77, 55-63. DOI: 10.1016/S0165-1765(02)00110-6.

Leigh, W., Purvis, R. & Ragusa, J.M. (2002). Forecasting the NYSE composite index with technical analysis, pattern recognizer, neural network, and genetic algorithm: A case study in romantic decision support. Decision Support Systems, 32 (4), 361-377. DOI: 10.1016/ S0167-9236(01)00121-X.

Liu, J.N.K. & Kwong, R.W.M. (2007). Automatic extraction and identification of chart patterns towards financial forecast. Applied Soft Computing, 7, 1197-1208. DOI: 10.1016/j. asoc.2006.01.007.

Malkiel, B.G. (2003). Błądząc po Wall Street. Dlaczego nie można wygrać z rynkiem. Warszawa: WIG-Press.

Murphy, J.J., (1999). Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications. Paramus, NJ: New York Institute of Finance.

Ostasiewicz, S., Rusnak, Z. & Siedlecka, U. (2006). Statystyka: elementy teorii i zadania. Wrocław: Wydawnictwo Akademii Ekonomicznej we Wrocławiu.

Pociecha, J., Podolec, B., Sokołowski, A. & Zając, K. (1988). Metody taksonomiczne w badaniach społeczno-ekonomicznych. Warszawa: Państwowe Wydawnictwo Naukowe.

Pring, M.J. (1998). Podstawy analizy technicznej. Warszawa: WIG-Press.

Rencher, A.C. (2002). Methods of Multivariate Analysis. New York: John Wiley & Sons. DOI: 10.1002/0471271357.

Rousseeuw, P.J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65. DOI: 10.1016/0377-0427(87)90125-7.

Szanduła, J. (2011). Wyszukiwanie formacji w kursach giełdowych przy użyciu metod klasyfikacji danych. Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, 185, 82-93.

Tan, P., Steinbach, M. & Kumar, V. (2006). Introduction to data mining. Boston: Pearson Addison Wesley.

Wang, J.-L. & Chan, S.-H. (2007). Stock market trading rule discovery using pattern recognition and technical analysis. Expert Systems with Applications, 33 (2), 304-315. DOI: 10.1016/j.eswa.2006.05.002.

Folia Oeconomica Stetinensia

The Journal of University of Szczecin

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 129 129 8
PDF Downloads 68 68 3