The Use of the Geographically Weighted Regression for the Real Estate Market Analysis

Open access

Abstract

The article presents a method for developing geographically weighted regression models for analyzing real estate market transaction prices and evaluating the effect of selected property attributes on the prices and value of real estate. The property attributes were evaluated on a grading scale to determine the relative (percentage) indicators characterizing the relationships on the real estate market. The market data were analyzed to evaluate the influence of infrastructure availability on the prices of land in Olsztyn. The results were used to assess the effect of every utility service on the property transaction prices.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Adamczewski Z. (2006). Elementy modelowania matematycznego w wycenie nieruchomości. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.

  • Akaike H. (1973). Information theory and an extension of the maximum likelihood principle. In: B. Petrov and F. Csaki (Eds.) 2nd Symposium on Information Theory Budapest: Akademiai Kiado (pp. 267-281).

  • Anselin L. (1988). Spatial econometrics: methods and models. Dordrecht: Kluwer Academic Publishers.

  • Barańska A. (2008). Kryteria stosowania modeli stochastycznych w predykcji rynkowej wartości nieruchomości. Zastosowania Metod Statystycznych w Badaniach Naukowych. StatSoft www.statsoft.pl/czytelnia.

  • Bitner A. (2007). Konstrukcja modelu regresji wielorakiej przy wycenie nieruchomości ActaScientiarum Polonorum Administratio Locorum 7 1 41-53.

  • Bonnafous A. & Kryvobokov M. (2011). Insight into apartment attributes and location with factors and principal components. International Journal of Housing Markets and Analysis 4 2 155-171. DOI: 10.1108/17538271111137930.

  • Bruce R.W. & Sundell D.J. (1977). Multiple regression analysis: history and application in the appraisal profession. Real Estate Appraiser Jan/Feb 37-44.

  • Brunsdon C. Fotheringam S. & Charlton M. (1999). Some notes on parametric significance tests for geographically weighted regression. Journal of Regional Science 39 3 497-524.

  • Brunsdon C. Fotheringham S. & Charlton M. (2000). Geographically Weighted Regressionas a Statistical Model Spatial Analysis Research Group Department of Geography University of Newcastle-upon-Tyne UK.

  • Caseti E. (1972). Generating models by the expansion method: applications to geographic research Geographical Analysis 4 81-91.

  • Charlton M. & Fotheringham S. (2009). Geographically weighted regression. National Centre for Geocomputation Maynooth Ireland.

  • Czaja J. (2001). Metody szacowania wartości rynkowej i katastralnej nieruchomości. Kraków: Wydawnictwo Akademii Górniczo-Hutniczej w Krakowie.

  • Fotheringham S. Brunsdon C. Charlton M. (2002). Geographically Weighted Regression - the analysis of spatially varying relationships. New York: John Wiley & Sons Ltd.

  • Haining R. (2003). Spatial analysis of regional geostatistics data. Cambridge University Press.

  • Hozer J. (2001). Regresja wieloraka a wycena nieruchomości. Rzeczoznawca Majątkowy 2 13-14.

  • Hurvich C.M. Simonoff J.S. & Tsai C.L. (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. Journal of RoyalStatistical Society B 60 271-293 DOI: 10.1111/1467-9868.00125.

  • Kulczycki M. & Ligas M. (2007). Regresja ważona geograficznie jako narzędzie analizy rynku nieruchomości Geomatics and Environmental Engineering 1 2 59-68.

  • Lis C. (2005). Ekonometryczne modele cen transakcyjnych lokali mieszkalnych Zeszyty NaukoweUniwersytetu Szczecińskiego 415. Prace Katedry Ekonometrii i Statystyki 16 161-174.

  • Mark J. & Goldberg M.A. (1988). Multiple regression analysis and mass assessment. A review of the issues. Appraisal Journal 56 89-109.

  • McCord M. Davis P.T. Haran M. McGreal S. & Mcllhatton D. (2012). Spatial variation as a determinant of house price: Incorporating a geographically weighted regression approach within the Belfast housing market Journal of Financial Management of Propertyand Construction 17 1 49-72. DOI: 10.1108/13664381211211046.

  • Sawiłow E. (2010). Problematyka określania wartości nieruchomości metodą analizy statystycznej rynku. Studia i Materiały Towarzystwa Naukowego Nieruchomości 18 1 21-32.

  • Simpson E.H. (1951). The interpretation of interaction in contingency tables. Journal of theRoyal Statistical Society B13 238-241.

  • Swamy P. (1971). Statistical inference in random coefficient models. Berlin: Springer.

  • Tobler W.R. (1970). A computer movie simulating urban growth in the Detroid region EconomicGeography 46 234-240.

  • Wang K. & Wolverton M.L. (2002). Real Estate Valuation Theory. Berlin: Springer.

Search
Journal information
Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 305 102 4
PDF Downloads 114 40 4