Spatial and temporal analysis of leopards (Panthera pardus), their prey and tigers (Panthera tigris) in Huai Kha Khaeng Wildlife Sanctuary, Thailand

Open access

Abstract

Despite their extensive distribution globally, recent reports indicate leopards are declining, especially in Southeast Asia. To support conservation efforts we analyzed the behavioral interactions between leopards (Panthera pardus), their prey, and tigers to determine if leopards fine-tune their activity to maximize contact with four prey species (sambar; wild boar; barking deer; banteng) and avoid tigers and if prey alter their temporal activity in response to variation in their relative abundance ratio with leopards. A lower density of sambar in the northern part of our study area and a lower density of wild boar and a higher density of tigers in the southern part allowed us to examine fine-grained differences in the behavior of leopards and their prey. We used camera trap data to investigate spatial and temporal overlap. Differences in tiger relative abundance did not appear to impact the temporal activity of leopards. Leopards had similar cathemeral activity at all sites with highest activity at dawn and dusk. This behavior appears to be a compromise to provide access to diurnal wild boar and barking deer and nocturnal sambar and banteng. Sambar showed higher temporal avoidance of leopards in the north where its RAI was lowest; in contrast, wild boar had the highest temporal avoidance in the south where its density was lowest. This is the first study in Southeast Asia to quantify spatial and temporal interactions between the leopard, its primary ungulate prey, and the tiger. It provides new insights for conserving this declining subspecies.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Andheria A.P. Karanth K.U. Kumar N.S. 2007. Diet and prey profiles of three sympatric large carnivores in Bandipur Tiger Reserve India. Journal of Zoology 273 (2): 169–175. https://doi.org/10.1111/j.1469-7998.2007.00310.x

  • Azlan J.M. Sharma D.S.K. 2006. The diversity and activity patterns of wild fields in a secondary forest. Oryx 40 (1): 36–41. https://doi.org/10.1017/S0030605306000147

  • Brown J.S. Laundre J.W. Gurung M. 1999. The ecology of fear: optimal foraging game theory and trophic interactions. Journal of Mammalogy 80 (2): 385–399. https://doi.org/10.2307/1383287

  • Carbone C. Christie S. Conforti K. Coulson T. Franklin N. Ginsberg J.R. Griffiths M. Holden J. Kawanishi K. Kinnaird M.F. Laidlaw R. Lynam A. Macdonald D. Martyr D. McDougal C. Nath L. O’Brien T.G. Seidensticker J. Smith D.J.L. Sunquist M.E. Tilson R. Shahruddin W.N.W. 2001. The use of photographic rates to estimate densities of tigers and other cryptic mammals. Animal Conservation 4: 75–79.

  • Charnov E.L. 1976. Optimum foraging and the marginal value theorem. Theoretical Population Biology 9: 129–136.

  • Creel S. Christianson D. Liley S. Winnie J.A. 2007. Predation risk affects reproductive physiology and demography of elk. Science 315 (5814): 960.

  • Donadio E. Buskirk S.W. 2006. Diet morphology and interspecific killing in carnivora. The American Naturalist 167 (4): 524–536. doi: 10.1086/501033

  • Duangchantrasiri S. Umponjan M. Simcharoen S. Pattanavibool A. Chaiwattana S. Maneerat S. Kumar N.S. Jathanna D. Srivathsa A. Karanth K.U. 2016. Dynamics of a low-density tiger population in Southeast Asia in the context of improved law enforcement. Conservation Biology 30 (3): 639–648. https://doi.org/10.1111/cobi.12655

  • Garrott R.A. Bruggeman J.E. Becker M.S. Kalinowski S.T. White P.J. 2007. Evaluating prey switching in wolf–ungulate systems. Ecological Applications 17 (6): 1588–1597. doi: 10.1890/06-1439.1

  • Harihar A. Pandav B. Goyal S.P. 2011. Responses of leopard Panthera pardus to the recovery of a tiger Panthera tigris population. Journal of Applied Ecology 48 (3): 806–814. https://doi.org/10.1111/j.1365-2664.2011.01981.x

  • Holling C.S. 1959. Some characteristics of simple types of predation and parasitism. The Canadian Entomologist 91 (7): 385–398. https://doi.org/10.4039/Ent91385-7

  • Karanth K. U. Srivathsa A. Vasudev D. Puri M. Parameshwaran R. Kumar N.S. 2017. Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient. Proceedings of the the Royal Society. Biological Sciences 284 (1848): 20161860. https://doi.org/10.1098/rspb.2016.1860

  • Karanth K.U. Sunquist M.E. 1995. Prey selection by tiger leopard and dhole in tropical forests. The Journal of Animal Ecology 64 (4): 439–450. doi: 10.2307/5647

  • Karanth K.U. Sunquist M.E. 2000. Behavioural correlates of predation by tiger (Panthera tigris) leopard (Panthera pardus) and dhole (Cuon alpinus) in Nagarahole India. The Zoological Society of London 250: 255–265. https://doi.org/10.1111/j.1469-7998.2000.tb01076.x

  • Kenney J. Allendorf F.W. McDougal C. Smith J.L. 2014. How much gene flow is needed to avoid inbreeding depression in wild tiger populations? Proceedings of the Royal Society B. Biological Sciences 281 (1789): 20133337. https://doi.org/10.1098/rspb.2013.3337

  • Kitchener A.C. Breitenmoser-Würsten Ch. Eizirik E. Gentry A. Werdelin L. Wilting A. Yamaguchi N. Abramov A.V. Christiansen P. Driscoll C. Duckworth J.W. Johnson W. Luo. S.-J. Meijaard E. O’Donoghue P. Sanderson J. Seymour K. Bru-ford M. Groves C. Hoffmann M. Nowell K. Timmons Z. Tobe S. 2017. A revised taxonomy of the Felidae. The final report of the Cat Classification Task Force of the IUCN/SSC Cat Specialist Group. Cat News Special Issue 11: 80.

  • Kronfeld-Schor N. Dayan T. 2003. Partitioning of time as an ecological resource. Annual Review of Ecology Evolution and Systematics 34 (1): 153–181. https://doi.org/10.1146/annurev.ecolsys.34.011802.132435

  • Lekagul B. McNeely J.A. 1977. Mammals of Thailand. Bangkok: Kurusapha Ladpao Press. 758 p.

  • Linkie M. Ridout M.S. 2011. Assessing tiger-prey interactions in Sumatran rainforests. Journal of Zoology 284 (3): 224–229. https://doi.org/10.1111/j.1469-7998.2011.00801.x

  • Lovari S. Pokheral C.P. Jnawali S.R. Fusani L. Ferretti F. 2015. Coexistence of the tiger and the common leopard in a prey-rich are: the role of prey partitioning. Journal of Zoology 295: 122–131.

  • Lynam J.A. Jenks E.K. Tantipisanuh N. Chutipong W. Ngoprasert D. Gale A.G. Steinmetz R. Sukmasuang R. Bhumpakphan N. Lon I. Grassman J. Kitamura S. Reed H.D. Baker C.M. McShea W. Songsasen N. Leimgruber P. 2013. Terrestrial activity patterns of wild cats from camera-trapping. The Raffles Bulletin of Zoology 61 (1): 407–415.

  • Maputla N.W. Maruping N.T. Chimimba C.T. Ferreira S.M. 2015. Spatio-temporal separation between lions and leopards in the Kruger National Park and the Timbavati Private Nature Reserve South Africa. Global Ecology and Conservation 3: 693–706. https://doi.org.10.1016/j.gecco.2015.03.001

  • Miththapala S. Seidensticker J. O’Brien S.J. 1996. Phylogeographic subspecies recognition in leopards (Panthera pardus): molecular genetic variation. Conservation Biology 10: 1115–1132.

  • Mondal K. Gupta S. Qureshi Q. Sankar K. 2011. Prey selection and food habits of leopard (Panthera pardus fusca) in Sariska Tiger Reserve Rajasthan India. Mammalia 75 (2): 201–205. https://doi.org/10.1515/mamm.2011.011

  • O’Brien T.G. Kinnaird M.F. Wibisono H.T. 2003. Crouching tigers hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Animal Conservation 6 (2): 131–139. https://doi.org/10.1017/s1367943003003172

  • Odden M. Wegge P. Fredriksen T. 2010. Do tigers displace leopards? If so why? Ecological Research 25 (4): 875–881. doi: 10.1007/s11284-010-0723-1

  • Palomares F. Caro T.M. 1999. Interspecific killing among mammalian carnivores. The American Naturalist 153 (5): 492–508. doi: 10.1086/303189

  • R Core Team. 2017. R: a language and environment for statistical computing. Vienna Austria: Foundation for Statistical Computing. https://www.r-project.org/

  • Ramakrishnan U. Coss R.G. Pelkey N.W. 1999. Tiger decline caused by the reduction of large ungulate prey: evidence from a study of leopard diets in southern India. Biological Conservation 89 (2): 113–120. https://doi.org/10.1016/s0006-3207(98)00159-1

  • Ramesh T. Kalle R. Sankar K. Qureshi Q. Bennett N. 2012. Spatio-temporal partitioning among large carnivores in relation to major prey species in Western Ghats. Journal of Zoology 287 (4): 269–275. https://doi.org.10.1111/j.1469-7998.2012.00908.x

  • Ridout M.S.. Linkie M. 2009. Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural Biological and Environmental Statistics 14 (3): 322–337. https://doi.org/10.1198/jabes.2009.08038

  • Ripple W.J. Estes J.A. Beschta R.L. Wilmers C.C. Ritchie E.G. Hebblewhite M. Berger J. Elmhagen B. Letnic M. Nelson M.P. Schmitz O.J. Smith D.W. Wallach A.D. Wirsing A.J. 2014. Status and ecological effects of the world’s largest carnivores. Science 343 (6167): 1241484. doi: 10.1126/science.1241484

  • Rostro-García S. Kamler J.F. Ash E. Clements G.R. Gibson L. Lynam A.J. McEwing R. Naing H. Paglia S. 2016. Endangered leopards: range collapse of the Indochinese leopard (Panthera pardus delacouri) in Southeast Asia. Biological Conservation 201: 293–300. https://doi.org/10.1016/j.biocon.2016.07.001

  • Schaller G.B. 1967. The deer and the tiger. Chicago: The University of Chicago Press. 370 p.

  • Selvan K.M. Veeraswami G.G. Lyngdoh S. Habib B. Hussain S.A. 2013. Prey selection and food habits of three sympatric large carnivores in a tropical lowland forest of the Eastern Himalayan Biodiversity Hotspot. Mammalian Biology – Zeitschrift für Säugetierkunde 78 (4): 296–303. https://doi.org/10.1016/j.mambio.2012.11.009

  • Simcharoen A. Savini T. Gale G.A. Simcharoen S. Duangchantrasiri S. Pakpien S. Smith J.L.D. 2014. Female tiger Panthera tigris home range size and prey abundance: important metrics for management. Oryx 48 (3): 370–377. https://doi.org/10.1017/s0030605312001408

  • Simcharoen A. Simcharoen S. Duangchantrasiri S. Bump J. Smith J.L.D. 2018. Tiger and leopard diets in western Thailand: Evidence for overlap and potential consequences. Food Webs 15: e00085. https://doi.org/10.1016/j.fooweb.2018.e00085

  • Simcharoen S. 2007. The relationship between environmental factors and leopards in Huai Kha Khaeng Wildlife Sanctuary Uthai Thani. Journal of Wildlife in Thailand 14: 65–79.

  • Simcharoen S. Barlow A.C.D. Simcharoen A. Smith J. L.D. 2008. Home range size and daytime habitat selection of leopards in Huai Kha Khaeng Wildlife Sanctuary Thailand. Biological Conservation 141 (9): 2242–2250. https://doi.org/10.1016/j.biocon.2008.06.015

  • Sollmann R. Mohamed A. Samejima H. Wilting A. 2013. Risky business or simple solution – relative abundance indices from camera-trapping. Biological Conservation 159: 405–412. https://doi.org/10.1016/j.biocon.2012.12.025

  • Stein A.B. Athreya V. Gerngross P. Balme G. Henschel P. Karanth U. Miquelle D. Rostro S. Kamler J.F. Laguardia A. 2016. Panthera pardus. The IUCN Red List of Threatened Species 2016: e.T15954A50659089. [cit. 2019-05-3]. http://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS. T15954A50659089.en

  • Steinmetz R. Seuaturien N. Chutipong W. 2013. Tigers leopards and dholes in a half-empty forest: assessing species interactions in a guild of threatened carnivores. Biological Conservation 163: 68–78. https:/doi.org/10.1016/j.biocon.2012.12.016

  • Trisurat Y. 2004. GIS database and its applications for ecosystem management. The Western Forest Complex Ecosystem Management Project Department of National Park Wildlife and Plant Conservation Bangkok Thailand. 228 p.

  • Uphyrkina O. Johnson W.E. Quigley H. Miquelle D. Marker L.L. Bushs M. O’Brien S. J. 2001. Phylogenetics genome diversity and origin of moder leopard Panthera pardus. Molecular Ecology 10: 2617–2633.

  • Van Schaik C. P. Griffiths M. 1996. Activity periods of Indonesian rain forest mammals. Biotropica 28 (1): 105–112. doi: 10.2307/2388775

  • Yang H. Zhao X. Han B. Wang T. Mou P. Ge J. Feng L. 2018. Spatiotemporal patterns of Amur leopards in northeast China: influence of tigers prey and humans. Mammalian Biology 92: 120–128. https://doi.org/10.1016/j.mambio.2018.03.009

  • Yasuda M. 2004. Monitoring diversity and abundance of mammals with camera traps: a case study on Mount Tsukuba central Japan. Mammal Study 29 (1): 37–46.

Search
Journal information
Impact Factor


CiteScore 2018: 0.75

SCImago Journal Rank (SJR) 2018: 0.2
Source Normalized Impact per Paper (SNIP) 2018: 0.511

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 307 308 50
PDF Downloads 325 325 53