The role of edaphic, vegetational and spatial factors in structuring soil animal communities in a floodplain forest of the Dnipro river

Open access


This paper examines the role of ecological factors, derived from principal component analysis performed on edaphic and vegetational dataset as well as spatial variables, in structuring the soil macrofauna community of the Dnipro floodplain within the ‘Dnipro-Orilsky’ Nature Reserve (Ukraine). The soil macrofauna was defined as invertebrates visible to the naked eye (macroscopic organisms). The test points formed a regular grid with a mesh size of 3 m with 7 × 15 dimensions. Thus, the total test point number was 105. At each point, soil-zoological samples of 0.25 × 0.25 m were taken for quantifying the soil macrofauna. The spatial structure was modeled by a set of independent spatial patterns obtained by means of principal coordinates of neighbor matrices analysis (PCNM-variables). Spatial PCNM-variables explain significantly more variations of the community (19.9%) than edaphic factors (4.1%) and vegetation factors (3.2%). Spatial and combined environmental and spatial effects were divided into three components: broad-scale component was characterized by periodicity of spatial variation with a wavelength of 24.0–44.5 m, medium-scale – 11.1–20 m, fine-scale – 6.6–11.0 m. For a broad-scale component, environmental factors of a vegetational nature are more important, for medium-scale, edaphic factors are more important, for fine-scale, both vegetation and edaphic are important. For litter-dwelling animals, the most characteristic spatial patterns are on the broad and medium-scale levels. For endogeic and anecic animals, the most significant variability is on the fine-scale level.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Adler P.B. Hillerislambers J. Levine J.M. 2007. A niche for neutrality. Ecology Letters 10: 95–104.

  • Amarasekare P. 2003. Competitive coexistence in spatially structured environments: a synthesis. Ecology Letters 6: 1109–1122.

  • Anderson J.M. 1975. The enigma of soil animal species diversity. In Vanek J. (eds). Progress in soil zoology. Prague: Czech Academy of Sciences p. 51-57.

  • Anderson M.J. 2011. Navigating the multiple meanings of β-diversity: a roadmap for the practicing ecologist. Ecology Letters 14: 19–28.

  • Baldeck C.A. Harms K.E. Yavitt J.B. John R. Turner B.L. Valencia R. Navarrete H. Davies S.J. Chuyong G.B. Kenfack D. Thomas D.W. Madawala S. Gunatilleke N. Gunatilleke S. Bunyavejchewin S. Kiratiprayoon S. Yaacob A. Supardi M.N. Dalling J.W. 2013. Soil resources and topography shape local tree community structure in tropical forests. In Proceedings of the Royal Society B 280 (1753): 2012–2032.

  • Barot S. Gignoux J. 2004. Mechanisms promoting plant coexistence: can all the proposed processes be reconciled? Oikos 106: 185–192.

  • Belgard A.L. 1950. Lesnaya rastitel’nost’ yugo-vostoka USSR [Forest vegetation of the south-eastern part of Ukraine]. Kyiv: KGU im. Shevchenko Press. 263 p.

  • Belgard A.L. 1971. Stepnoe lesovedenie [Steppe forestry]. Moskva: Lesnaya promyshlennosť. 336 p.

  • Belyea L.R. Lancaster J. 1999. Assembly rules within a contingent ecology. Oikos 86 (3): 402–416.

  • Berg M.P. 2012. Patterns of biodiversity at fine and small spatial scales. In Wall D.H. Bardgett R.D. Behan-Pelletier V. Herrick J.E. Jones T.H. Ritz K. Six J. Strong D.R. van der Putten W.H. (eds). Soil ecology and ecosystem services. Oxford UK: Oxford University Press p. 136–152.

  • Berg M.P. Bengtsson J. 2007. Temporal and spatial variability in soil food web structure. Oikos 116: 1789–1804.

  • Blanchet F.G. Bergeron J.A.C. Spence J.R. He F. 2013. Landscape effects of disturbance habitat heterogeneity and spatial autocorrelation for a ground beetle (Carabidae) assemblage in mature boreal forest. Ecography 36: 636–647.

  • Blanchet F.G. Legendre P. Borcard D. 2008. Forward selection of explanatory variables. Ecology 89 (9): 2623–2632.

  • Borcard D. Legendre P. 1994. Environmental control and spatial structure in ecological communities: An example using oribatid mites (Acari Oribatei). Environmental and Ecological Statistics 1: 37–61.

  • Borcard D. Legendre P. Avois-Jacquet C. Tuosimoto H. 2004. Dissecting the spatial structure of ecological data at multiple scales. Ecology 85: 1826–1832.

  • Borcard D. Legendre P. Drapeau P. 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

  • Brygadyrenko V.V. 2015. Evaluation of the ecological niche of some abundant species of the subfamily Platyninae (Coleoptera Carabidae) against the background of eight ecological factors. Folia Oecologica 42: 75–88

  • Brygadyrenko V.V. 2016. Effect of canopy density on litter invertebrate community structure in pine forests. Ekológia (Bratislava) 35 (1): 90–102.

  • Buzuk G.N. 2017. Fitoindikaciya s primeneniem ekologicheskikh shkal i regressionnogo analiza: ekolo-gicheskiĭ indeks [Phytoindication with ecological scales and regression analysis: environmental index]. Vestnik Farmacii 2 (76): 31–37.

  • Cadotte M.W. Fukami T. 2005. Dispersal spatial scale and species diversity in a hierarchically structured experimental landscape. Ecology Letters 8: 548–557.

  • Caruso T. Taormina M. Migliorini M. 2012. Relative role of deterministic and stochastic determinants of soil animal community: a spatially explicit analysis of oribatid mites. Journal of Animal Ecology 81(1): 214–221.

  • Chang L. Zeleny D. Li C. Chiu S. Hsieh C. 2013. Better environmental data may reverse conclusions about niche- and dispersal-based processes in community assembly. Ecology 94: 2145–2151.

  • Chase J.M. 2003. Community assembly: when should history matter? Oecologia 136: 489–498.

  • Chave J. 2004. Neutral theory and community ecology. Ecology Letters 7: 241–253.

  • Clark J.S. 2012. The coherence problem with the unified neutral theory of biodiversity. Trends in Ecology and Evolution 27: 199–203.

  • Decaëns T. Jiménez J.J. Rossi J.-P. 2009. A null-model analysis of the spatio-temporal distribution of earthworm species assemblages in Colombian grasslands. Journal of Tropical Ecology 25 (4): 415–427.

  • Decaëns T. Rossi J.-P. 2001. Spatio-temporal structure of earthworm community and soil heterogeneity in a tropical pasture. Ecography 24 (6): 671–682.

  • Diduh Y.P. 2012. Prinzypy bioindicatzii [The principles of bioindication]. Kyiv: Naukova dumka. 344 p.

  • Didukh Y.P. Fitsailo T.V. Korotchenko I.A. Yakushenko D.M. Pashkevych N.A. 2011. Biotopi lisovoi ta lisostepovoi zon Ukriiny [Biotopes of forest and forest-steppe zones of Ukraine]. Kyiv: LLC MACROS. 288 p.

  • Didukh Y.P. 2011. The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kyiv: Phytosociocentre. 176 p.

  • Digel C. Curtsdotter A. Riede J. Klarner B. Brose U. 2014. Unravelling the complex structure of forest soil food webs: higher omnivory and more trophic levels. Oikos 123: 1157–1172.

  • Dinno A. 2012. paran: Horn’s test of principal components/factors. R package version 1.5.1. [cit. 2017-11-03].

  • Dornelas M. 2010. Disturbance and change in biodiversity. Philosophical Transactions of the Royal Society B 365: 3719–3727.

  • Dornelas M. Connolly S.R. Hughes T.P. 2006. Coral reef diversity refutes the neutral theory of biodiversity. Nature 440: 80–82.

  • Drake J.A. 1990. Communities as assembled structures: do rules govern pattern? Trends in Ecology and Evolution 5: 159–164.

  • Dray S. Legendre P. Peres-Neto P. 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling 196: 483–493.

  • Dray S. with contributions of Legendre P. Blanchet G. 2016. packfor: forward selection with permutation (Canoco p. 46). R package version 0.0-8/r136. [cit. 2017-11-03].

  • Dvořáková J. Horsák M. 2012. Variation of snail assemblages in hay meadows: disentangling predictive power of abiotic environment and vegetation. Malacologia 55: 151–162.

  • Ellenberg H. 1974. Zeigerwerte der Gefässpflanzen Mitteleuropas. Scripta geobotanica 9. Göttingen: Göltze. 197 p.

  • Ettema C.H. Rathbun S.L. Coleman D.C. 2000. On spatiotemporal patchiness and the coexistence of five species of Chronogaster (Nematoda: Chronogasteridae) in a riparian wetland. Oecologia 125: 444–452.

  • Ettema C. Wardle D.A. 2002. Spatial soil ecology. Trends in Ecology and Evolution 17: 177–183.

  • Ettema C.H. Yeates G.W. 2003. Nested spatial biodiversity patterns of nematode genera in a New Zealand forest and pasture soil. Soil Biology and Biochemistry 35 (2): 339–342.

  • Fukami T. 2010. Community assembly dynamics in space. In Verhoef H.A. Morin P.J. (eds). Community ecology: processes models and applications. Oxford: Oxford University Press p. 45–54.

  • Gazol A. Ibanez R. 2010. Plant species composition in a temperate forest: multi-scale patterns and determinants. Oecologia 36: 634–644.

  • Gholami S. Sayad E. Gebbers R. Schirrmann M. Joschko M. Timmer J. 2016. Spatial analysis of riparian forest soil macrofauna and its relation to abiotic soil properties. Pedobiologia 59 (1): 27–36.

  • Gilyarov M.S. Folkmanova B. 1957. Gubonogie mnogonozhki (Chilopoda) stepnoĭ zony jugo-vostoka Evrope-jskoĭ chasti SSSR kak pokazateli pochvennykh usloviĭ v lesonasazhdeniyakh [Centipedes (Chilopoda) of the steppe zone in the southeast of the European part of the USSR as indicators of soil conditions in forest stands]. Izvestiya Akademii nauk SSSR Seriya Biologicheskaya 2: 211–219.

  • Horn J.L. 1965. A rationale and a test for the number of factors in factor analysis. Psychometrika 30: 179–185.

  • Horsák M. Hájek M. Tichý L. Juřičková L. 2007. Plant indicator values as a tool for land mollusc autecology assessment. Acta Oecologica 32: 161–171.

  • Hu Y.-H. D.-Y. Sheng Y.-Z. Xiang Z.-J. Yang D.-P. Xu N.-N. Zhang Shi L.-L. 2013. The environment not space dominantly structures the landscape patterns of the richness and composition of the tropical understory vegetation. PLoS ONE 8:e81308.

  • Hubbell S.P. 2001. The unified neutral theory of biodiversity and biogeography. Princeton New Jersey USA: Princeton University Press. 392 p.

  • Hutchinson G.E. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415–427.

  • Hutchinson G.E. 1965. The niche: an abstractly inhabited hypervolume. In Hutchinson G.E. (eds). The ecological theatre and the evolutionary play. New Haven: Yale University Press p. 26–78.

  • Igondová E. Majzlan O. 2015. Assemblages of ground beetles (Carabidae Coleoptera) in peatland habitat surrounding dry pine forests and meadows. Folia Oecologica 42: 21–28.

  • Jiménez J.J. Decaëns T. Rossi J.P. 2006. Stability of the spatio-temporal distribution and niche overlap in neotropical earthworm assemblages. Acta Oecologica 30 (3): 299–311.

  • Jiménez J.J. Decaëns T. Rossi J.-P. 2012. Soil environmental heterogeneity allows spatial co-occurrence of competitor earthworm species in a gallery forest of the Colombian ‘Llanos’. Oikos 121: 915–926.

  • Jiménez J. J. Decaëns T. Lavelle P. Rossi J.-P. 2014. Dissecting the multi-scale spatial relationship of earthworm assemblages with soil environmental variability. BMC Ecology 14:26.

  • Jorgensen H.B. Elmholt S. Petersen H. 2003. Collembolan dietary specialisation on soil grown fungi. Biology and Fertility of Soils 39: 9–15.

  • Karpachevsky L.O. 2005. Ekologicheskoe pochvovedenie [Ecological pedology]. Moscow: Geos. 336 p.

  • Kirby K.N. Gerlanc D. 2013. BootES: an R package for bootstrap confidence intervals on effect sizes. Behavior Research Methods 45: 905–927.

  • Krivolutsky D.A. 1994. Pochvennaya fauna v ekologicheskom kontrole [Soil fauna in ecological control]. Moskva: Nauka. 240 p.

  • Laliberte E. Paquette A. Legendre P. Bouchard A. 2009. Assessing the scale-specific importance of niches and other spatial processes on beta diversity: a case study from a temperate forest. Oecologia 159: 377–388.

  • Lawton J. 1999. Are there general laws in ecology? Oikos 84: 177–192

  • Lazorík M. Kula E. 2015. Impact of weather and habitat on the occurrence of centipedes millipedes and terrestrial isopods in mountain spruce forests. Folia Oecologica 42: 103–112.

  • Legendre P. 1993. Spatial autocorrelation: trouble or new paradigm? Ecology 74: 1659–1673.

  • Legendre P. Borcard D. Peres-Neto P.R. 2005. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs 75: 435–450.

  • Legendre P. Mi X. Ren H. Ma K. Yu M. Sun I.-F. He F. 2009. Partitioning beta diversity in a subtropical broadleaved forest of China. Ecology 90: 663–674

  • Maraun M. Martens H. Migge S. Theenhaus A. Scheu S. 2003. Adding to ‘the enigma of soil animal diversity’: fungal feeders and saprophagous soil invertebrattes prefer similar food substrates. European Journal of Soil Biology 39: 85–95.

  • Mathieu J. Rossi J.P. Grimaldi M. Mora P. Lavelle P. Rouland C. 2004. A multi-scale study of soil macrofauna biodiversity in Amazonian pastures. Biology and Fertility of Soils 40: 300–305.

  • McArdle B.H. Anderson M.J. 2004. Variance heterogeneity transformations and models of species abundance: a cautionary tale. Canadian Journal of Fisheries and Aquatic Sciences 61: 1294–1302.

  • Nekola J.C. 2003. Large-scale terrestrial gastropod community composition patterns in the Great Lakes region of North America. Diversity and Distributions 9: 55–71.

  • Ondina P. Hermida J. Outeiro A. Mato S. 2004. Relationships between terrestrial gastropod distribution and soil properties in Galicia (NW Spain). Applied Soil Ecology 26 (1): 1–9.

  • Pennisi B. V. van Iersel M. 2002. 3 ways to measure medium EC. GMPro 22 (1): 46–48.

  • Polláková N. Šimanský V. Jonczak J. 2017. Characteristics of physical properties in soil profiles under selected introduced trees in the Nature Reserve Arboretum Mlyňany Slovakia. Folia Oecologica 44: 78–86.

  • R Core Team 2017. R: a language and environment for statistical computing. Vienna Austria: R Foundation for Statistical Computing. [cit. 2017-10-04].

  • Raunkier C. 1934. The life forms of plants and statistical plant geography. Oxford: Clarendon Press. 632 p.

  • Rossi J.P. 2003. Clusters in earthworm spatial distribution. Pedobiologia 47 (5–6): 490–496.

  • Rossi J.-R. Lavelle P. Tondoh J.E. 1996. Statistical tool for soil biology. XI. Autocorrelogram and Mantel test. European Journal of Soil Biology 32: 195–203.

  • Saetre P. 1999. Spatial patterns of ground vegetation soil microbial biomass and activity in a mixed spruce-birch stand. Ecography 22: 183–192

  • Schneider K. Migge S. Norton R.A. Scheu S. Langel R. Reineking A. Maraun M. 2004. Trophic niche differentiation in soil microarthropods (Oribatida Acari): evidence from stable isotope ratios (N-15/N-14). Soil Biology and Biochemistry 36: 1769–1774.

  • Schoener T.W. 1974. Resource partitioning in ecological communities. Science 185 (4145): 27–39.

  • Siefert A. Ravenscroft C. Weiser M.D. Swenson N.G. 2013. Functional beta-diversity patterns reveal deterministic community assembly processes in eastern North American trees. Global Ecology and Biogeography 6: 682–691.

  • Soinenen J. Lennon J.J. Hillebrand H. 2007. A multivariate analysis of beta diversity across organisms and environments. Ecology 88: 2830–2838.

  • Stašiov S. Svitok M. 2014. The influence of stand density on the structure of centipede (Chilopoda) and millipede (Diplopoda) communities in the submountain beech forest. Folia Oecologica 41: 195–201.

  • Takeda H. 1987. Dynamics and maintenance of Collembolan community structure in a forest soil system. Researches on Population Ecology 29: 291–346.

  • Tarasov V.V. 2012. Flora Dnipropetrovs’koi’ ta Zaporiz’koi’ oblastej. Sudynni roslyny. Biologo-ekologichna harakterystyka vydiv [Flora of Dnipropetrovsk and Zaporizhzhya regions. Vascular plants. Biological and ecological characteristics of the species]. Dnipropetrovsk: Dnipropetrovsk University Press. 296 p.

  • Tsatsenkin I.A. 1970. Ekologicheskaya otsenka kormovykh ugodiy Karpat i Balkan po rastitel’nomu pokrovu [Ecological evaluation of the fodder lands of the Carpathians and the Balkans on vegetation]. Moscow: Institute of Forages. 192 p.

  • Vadunina A. F. Korchagina S.A. 1986. Metody issledovaniya fizicheskikh svoĭstv pochv [Methods for research of physical properties of the soil]. Moskva: Agropromizdat. 416 p.

  • Viketoft M. 2013. Determinants of small-scale spatial patterns: importance of space plants and abiotics for soil nematodes. Soil Biology and Biochemistry 62: 92–98.

  • Wardle D.A. 2006. The influence of biotic interactions on soil biodiversity. Ecology Letters 9: 870–886.

  • Warren M.W. Zou X. 2002. Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico. Forest Ecology and Management 170: 161–171.

  • Whalen J.K. 2004. Spatial and temporal distribution of earthworm patches in corn field hayfield and forest systems of southwestern Quebec Canada. Applied Soil Ecology 27 (2): 143–151.

  • Whittaker R.H. 1960. Vegetation of the Siskiyou Mountains Oregon and California. Ecological Monographs 30: 279–338.

  • Whittaker R.H. 1972. Evolution and measurement of species diversity. Taxonomy 21: 213–251.

  • Widenfalk L.A. Bengtsson J. Berggren Å. Zwiggelaar K. Spijkman E. Huyer-Brugman F. Berg M.P. 2015. Spatially structured environmental filtering of collembolan traits in late successional salt marsh vegetation. Oecologia 179 (2): 537–549.

  • Wilson J.B. Habiba G. 1995. Limitation to species coexistence: evidence for competition from field observations using a patch model. Journal of Vegetation Science 6: 369–376.

  • Yorkina N. Maslikova K. Kunah O. Zhukov O. 2018. Analysis of the spatial organization of Vallonia pulchella (Muller 1774) ecological niche in Technosols (Nikopol manganese ore basin Ukraine). Ecologica Montenegrina 17: 29–45.

  • Zhukov A. Zadorozhnaya G. 2016. Spatial heterogeneity of mechanical impedance of a typical chernozem: the ecological approach. Ekológia (Bratislava) 35: 263–278.

  • Zhukov A.V. 2015. Foromorfy v sisteme ekomorf pochvennykh zhivotnykh [Phoromorphs in the ecomorph system of soil animals]. The Journal of V.N. Karazin Kharkiv National University. Series: Biology 25: 254–266.

  • Zhukov A.V. Kunakh O.N. Novikova V.A. 2015. Ekomorficheskaya organizaciya soobshchestv mezopedobiontov dubnyaka so svezhim raznotrav’em na arene r. Dnepr [The ecomorphic organization of the mesopedobiont community of an oak forest with the fresh grass in arena of the Dnieper river]. The Kharkov Entomological Society Gazette 23 (2): 39–53.

  • Zhukov A.V. Shtirts A.D. Zadorozhnaja G.A. Kunah O.N. 2013. Frakcionirovanie prostranstvennoj variacii soobshchestva pancirnyh kleshchej (Acari: Oribatida) v pochve sel’skohozyajstvennogo polya v usloviyah stepnoj zony Ukrainy [Fractionation of oribatid mites (Acari: Oribatida) community spatial structure in the soil of an agricultural field in Ukraine’s steppe zone]. Problems of Ecology and Environmental Protection of Technogenic Region 1 (13): 87–105.

  • Zhukov O.V. Gubanova N.L. 2015. Riznomanittya ta dynamika uhrupovan’ zemnovodnykh zaplavnykh ekosystem r. Samara-Dniprovs’ka [Diversity and dynamics of amphibians in floodplain ecosystems of the Samara river]. Visnyk of Dnipropetrovsk University. Biology Ecology 23 (1): 66–73.

  • Zhukov O.V. Kunah O.M. Dubinina Y.Y. Ganzha D.S. 2017. Riznomanittya ta fitoindykatsiyni mozhlyvosti roslynnoho uhrupovannya [Diversity and phytoindication capacity of a plant community]. Ukrainian Journal of Ecology 7 (4): 81–99.

  • Zhukov O.V. Kunah O.N. Novikova V.A. 2016. Funkcional’naya struktura soobshchestva mezopedobiontov dernovo-borovoj pochvy areny r. Dnepr [The functional organisation of the mesopedobionts community of sod pinewood soils on arena of the river Dnepr]. Visnyk of Dnipropetrovsk University. Biology Ecology 24 (1): 26–39.

Journal information
Impact Factor

CiteScore 2018: 0.75

SCImago Journal Rank (SJR) 2018: 0.2
Source Normalized Impact per Paper (SNIP) 2018: 0.511

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 378 258 15
PDF Downloads 275 164 7