Immission-load-related dynamics of S-SO42− in precipitation and in lysimetric solutions penetrating through beech ecosystems

Ján Kukla 1 , Eduard Bublinec 1 , 2 , Branislav Schieber 1 , Daniela Kellerová 1 , Svetlana Bičárová 3 , and Rastislav Janík 1
  • 1 Institute of Forest Ecology of the Slovak Academy of Sciences, , Zvolen
  • 2 Institute of Biology and Ecology, Faculty of Education, Catholic University in Ružomberok, 034 01, Ružomberok
  • 3 Earth Science Institute of the Slovak Academy of Sciences, , 059 60, Tatranská Lomnica

Abstract

The paper presents the results of a 23-year study of sulphate sulphur dynamics in beech ecosystems exposed to different immission loads. The amounts of S-SO42− in precipitation water entering the ecosystems were: the Kremnické vrchy Mts, a clear-cut area 519 kg ha−1 (24.7 kg ha−1 per year), a beech forest 476 kg ha−1 (22.7 kg ha−1 per year); the Štiavnické vrchy Mts an open place 401 kg ha−1 (24.6 kg ha−1 per year), a beech forest 324 kg ha−1 (19.1 kg ha−1 per year). The average SO42− concentrations in lysimetric solutions penetrating through surface humus to a depth of Cambisol 10 and 25 cm were increased as follows: in the Kremnické vrchy Mts from 12.71 to 16.17 mg l−1 and in the Štiavnické vrchy Mts from 18.73 to 28.80 mg l−1. The S-SO4−2 amounts penetrating the individual soil layers in the Kremnické vrchy Mts were as follows: in case of surface humus on clear-cut area 459 kg ha−1 (20.9 kg ha−1 per year), in beech forest 433 kg ha−1 (19.7 kg ha−1 per year); below 10 cm organo-mineral layer of the mentioned plots penetrated 169–171 kg ha−1 (7.7–7.8 kg ha−1 per year), and below 25 cm mineral layer 155–255 kg ha−1 (7.1−11.6 kg ha−1 per year) – a higher amount was found on clear-cut area with an episodic lateral flow of soil solutions. In beech forest of the Štiavnické vrchy Mts penetrated below surface humus 424 kg ha−1 S-SO42− (18.9 kg ha−1 per year), below 10 cm mineral layer 458 kg ha−1 S-SO42− (19.9 kg ha−1 per year), and below 25 cm mineral layer as much as 599 kg ha−1 S-SO42− (26.0 kg ha−1 per year). This fact was caused by frequent lateral flow of soil solutions. The results indicate that the assumption about lower immission load of the beech ecosystem in the Kremnické vrchy Mts is wrong, at least in the case of S-SO42−. The testing has revealed that the studied beech ecosystems differ very significantly in sulphur amounts penetrating under 0.10 m and 0.25 m. The inter-annual differences were insignificant.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Alewell, C., Manderscheid, B., Meesenburg, H., Bittersohl, J., 2000. Environmental chemistry: is acidification still an ecological threat? Nature, 407: 856–857.

  • Barna, M., 2004. Adaptation of European beech (Fagus sylvatica L.) to different ecological conditions: leaf size variation. Polish Journal of Ecology, 52: 35–45.

  • Dubová, M., Bublinec, E., 2006. Evaluation of sulphur and nitrate-nitrogen deposition to forest ecosystems. Ekológia (Bratislava), 25: 366–376.

  • Fecenko, J., Ložek, O., 2000. Výživa a hnojenie poľných plodín [Nutrition and fertilization of field crops]. Nitra: Slovenská poľnohospodárska univerzita. 452 p.

  • Fecenko, J., Ložek, O., Kulich, S., 2010. Importance of application of sulphur fertilizers in Slovak Republic. [cit. 2017-01-07]. http:/www.agris.cz:6

  • Hančinský, L., 1972. Lesné typy Slovenska [The forest types of Slovakia]. Bratislava: Príroda. 307 p.

  • Hrkal, Z., Prchalová, H., Fottová, D., 2006. Trends in impact of acidification on groundwater bodies in the Czech Republic; an estimation of atmospheric deposition at the horizon 2015. Journal of Atmospheric Chemistry, 53: 1–12.

  • Hruška, J., Cienciala, E., Moravčík, P., Navrátil, T., Hofmeister, J., 2001. Acidifikace a nutriční degradace lesních půd [The long-term acidification and nutric degradation of forest soils]. Lesnická Práce, 80: 24–32.

  • Hruška, J., Majer, V., Fottová, D., 2006. The influence of acid rain on surface waters in the Giant Mountains. Opera Corcontica, 43: 95–110.

  • Janík, R., Bublinec, E., Dubová, M., 2012a. Sulphate concentration and SO4 2− flux in soil solutions in the West Carpathians Mountains on an example of submontane beech forest stand. Journal of Forest Science, 58: 35–44.

  • Janík, R., Bublinec, E., Dubová, M., 2012b. The concentration of SO4 2− and amount of S-SO4 2− in soil water and throughfall in beech forest of Štiavnické vrchy Mts, Slovakia. Folia Oecologica, 39: 28–35.

  • Kaiser, K., Guggenberger, G., 2005. Dissolved organic sulphur in soil water under Pinus sylvestris L. and Fagus sylvatica L. stands in northeastern Bavaria, Germany variations with seasons and soil depth. Biogeochemistry, 72: 337–364.

  • Kantor, P., Lochman J., 1985. Působení smrkových a bukových porostů v Orlických horách na chemismus vody při odtoku do vodních zdrojů [Effects of Norway spruce and beech forests in the Orlické hory Mts on chemistry of water disposable to runoff into water resources]. Zprávy Lesnického Výzkumu, 30: 5–9.

  • Katutis, K., Repsiene, R., Baltramaityte, D., 2008. The effects of different soil genesis on the concentration of biogenic elements in lysimetric water. Agronomijas Věstis. Latvian Journal of Agronomy, 10: 37–41.

  • Kaňa, J., Kopáček, J., 2005. Sulphate sorption characteristics of the Bohemian Forest soils. Silva Gabreta, 11: 3–12.

  • Kellerová, D., 2005. The air pollution in the surroundings of an aluminium plant. Ekológia (Bratislava), 24 (1): 122–128.

  • Kopáček, J., Vrba, J., 2006. Integrated ecological research of catchment-lake ecosystems in the Bohemian Forest (Central Europe): A preface. Biologia, 61, Suppl. 20: 363–370.

  • Kukla, J., 1988. Chemizmus lyzimetrických roztokovmigrácia živín v pôdach vybraných lesných ekosystémov [Chemistry of lysimetric solutions and migration of nutrients in the soil of selected forest ecosystems]. Final report VI-4-2/04. Zvolen: ÚEL CBEV SAV. 54 p.

  • Kukla, J., 1990. Dynamika geochemických procesov v pôdach vybraných lesných ekosystémov [Dynamics of geochemical processes in soils of selected forest ecosystems]. Final report. Zvolen: Ústav ekológie lesa SAV. 102 p.

  • Kukla, J., 2002. Variability of solutions percolated through cambisol in a beech ecosystem. Ekológia (Bratislava), 21, Suppl. 2: 13–25.

  • Kukla, J., Kontriš, J., Kontrišová, O., Gregor, J., Mihálik, A., 1998. Causes of floristical differentiation of Dentario bulbiferae – Fagetum (Zlatník 1935) Hartmann 1953 and Carici pilosae – Fagetum Oberd. 1957 associations. Ekológia (Bratislava), 17 (2): 177–186.

  • Kuklová, M., Hniličková, H., Kukla, J., Hnilička, F., 2015. Environmental impact of the Al smelter on physiology and macronutrient contents in plants and Cambisols. Plant, Soil and Environment, 61 (2): 72–78.

  • Lindroos, A.J., Derome, J., Derome, K., Lindgren, M., 2006. Trends in sulphate deposition on the forest and forest floor and defoliation degree in 16 intensively studies forest stands in Finland during 1996–2003. Boreal Environment Research, 11: 451–460.

  • Lošák, T., Čermák, P., Hlušek, J., 2012. Changes in fertilisation and liming of soils of the Czech Republic for the last 20 years. Archives of Agronomy and Soil Science, 58, Suppl. 1: 238–242.

  • Lošák, T., Hlušek, J., Martinec, J., Vollmann, J., Peterka, J., Filipčík, R., Varga, L., Ducsay, L., Martensson, A., 2011. Effect of combined nitrogen and sulphur fertilization on yield and qualitative parameters of Camelina sativa [L.] Crtz. (false flax). Acta Agriculturae Scandinavica. Section B, Soil and Plant Science, 61 (4): 313–321.

  • Lošák, T., Vollmann, J., Hlušek, J., Peterka, J., Filipčík, R., Prášková, L., 2010. Influence of combined nitrogen and sulphur fertilization on False flax (Camelina sativa [L.] Crtz.) yield and quality. Acta Alimentaria, 39 (4): 431–444.

  • Minďáš, J., Škvarenina, J., Závodský, J., Kremler, M., Molnárová, H., Pavlenda, P., Kunca, V., 2001. Doterajšie výsledky hodnotenia kritických úrovní a záťaží na Slovensku [Present results of critical levels/loads estimation in Slovakia]. In Bioklimatológia a životné prostredie. XIII. bioklimatologická konferencia SBkS a ČBkS. [Bratislava]: Slovenská bioklimatologická spoločnosť SAV. 11 p. 1 electronic optical disc (CD-ROM).

  • Ministry of Environment of the Slovak Republic, 2010. State of the environment report Slovak Republic. Bratislava: Ministry of the Environment of the Slovak Republic. 177 p.

  • Novák, M., Mitchel, M. J., Jačková, I., Buzek, F., Schweistillová J., Erbanová, L., Přikryl, R., Fottová, D., 2007. Processes affecting oxygen isotope ratios of atmospheric and ecosystem sulphate in two contrasting forest catchments in Central Europe. Environmental Science and Technology, 41 (3): 703–709.

  • Novotný, R., Lachmanová, Z., Šrámek, V., Vortelová, L., 2008. Air pollution load and stand nutrition in the Forest District Jablunkov, part Nýdek. Journal of Forest Science, 54: 49–54.

  • Pavlenda, P., Pajtík, J., Priwitzer, T., Capuliak, J., Konôpka, J., Pavlendová, H., Sitková, Z., Tóthová, S., 2012. Monitoring lesov Slovenska. Projekt Futmon, ČMS Lesy 2011 [Forests monitoring in the Slovak Republic. Futmon project, Partial monitoring system Forests 2011]. Zvolen: Národné lesnícke centrum – Lesnícky výskumný ústav. 113 p.

  • Pichler, V., Bublinec, E., Gregor, J., 2006. Acidification of forest soil in Slovakia – causes and consequences. Journal of Forest Science, 52: 23–27.

  • Quilchano, C., Haneklaus, S., Gallardo, J.C., Schnug, E., Moreno, G., 2002. Sulphur balance in a broadleaf, non-polluted, forest ecosystem (central western Spain). Forest Ecology and Management, 161: 205–214.

  • Schieber, B., 2006. Phenology of leafing and yellowing of leaves in selected forest trees in Slovakia. Journal of Forest Science, 4: 29–36.

  • Tarrason, L., Fagerli, H., Klein, H., Simpson, D., Benedictow, A.C., Vestreng, V., Rigler, E., Emberson, L., Posch, M., Spranger, T., 2006. Transboundary acidification, eutrophication and ground level ozone in Europe from 1990 to 2004 in support for the review of the Gothenburg Protocol. EMEP status report, 1/2006. Oslo: Norwegian Meteorological Institute. [cit. 2017-09-09]. http://emep.int/publ/reports/2006/status_report_1_2006_ch.pd

  • Tejnecký, V., Bradová, M., Borůvka, L., Němeček, K., Šebek, O., Nikodém, A., Zenáhlíková, J., Rejzek, J., Drábek, O., 2013. Profile distribution and temporal changes of sulphate and nitrate contents and related soil properties under beech and spruce forests. Science of the Total Environment, 442: 165–171.

  • Tesař, M., Šír, M., Fottová, D., 2004. Usazené zrážky na Šumavě: Deposited precipitation in the Bohemian Forest. Aktuality Šumavského Výzkumu, 2: 79–83.

  • Tuček, A., Škvarenina, J., Vorčák, J., 2004. Application GIS in study of emission load in the mountain ecosystems of Oravske Beskydy – Babia Hora Mts. In Šiška, B., Igáz, D. (eds). Climate change – weather extrems – organisms and ecosystems. International bioclimatological conference. Vinicky, 23–26. 8. 2004 [electronic resource]. Nitra: SPU, p.  16.

  • Urminská, J., Khun, M., Jurkovič, Ľ., 2000. Risk of influence of certain non-desired elements in the environment of the Žiarska kotlina Basin and their relation to the health state of the local population. In Monitorovaniehodnotenie stavu životného prostredia III. Zborník referátov. Zvolen: Technická univerzita vo Zvolene, p. 165–173.

  • Zlatník, A., 1959. Přehled slovenských lesů podle skupin lesních typů [The overview of Slovak forests by groups of forest types]. Spisy Vĕdecké laboratoře biogeocenologie a typologie lesa Lesnické fakulty Vysoké školy zemĕdĕlské v Brnĕ, číslo 3. Brno: Lesnická fakulta Vysoké školy zemĕdĕlské v Brnĕ. 195 p.

  • Zlatník, A., 1976. Lesnická fytocenologie [Forest phytocenology]. Praha: SZN. 495 p.

  • Žaltauskaitė, J., Juknys, R., 2009. Throughfall chemistry and canopy interactions in urban and suburban coniferous stand. Environmental Research Engineering and Management, 4: 6–12.

OPEN ACCESS

Journal + Issues

Search