Development of soil water regime under spruce stands

Open access

Abstract

The aim of this paper is to analyse the water regime of soils under spruce ecosystems in relation to long-lasting humid and drought periods in the growing seasons 1991-2013. The dominant interval humidity in observing growing seasons is semiuvidic interval with soil moisture between hydro-limits maximal capillary capacity (MCC) and point of diminished availability (PDA). Gravitationally seepage concentrated from accumulated winter season, water from melting snow and existing atmospheric precipitation occurs in the soil only at the beginning of the growing season. The supplies of soil water are significantly decreasing in the warm climate and precipitant deficient days. The greatest danger from drought threatens Norway spruce during the summer months and it depends on the duration of dry days, water supply at the beginning of the dry days, air temperature and the intensity of evapotranspiration. In the surface layers of the soil, with the maximum occurrence of active roots, the water in semiarid interval area between hydro-limits PDA and wilting point (WP) decreases during the summer months. In the culminating phase occurs the drying to moisture state with capillary stationary and the insufficient supply of available water for the plants. Physiological weakening of Norway spruce caused by set of outlay components of the water balance is partially reduced by delivering of water by capillary action from deeper horizons. In extremely dry periods, soil moisture is decreasing also throughout the soil profile (0-100 cm) into the bottom third of the variation margin hydro-limits MCC-PDA in the category of capillary less moving and for plants of low supply of usable water (60-90 mm). The issue of deteriorated health state of spruce ecosystems is considered to be actual. Changes and developments of hydropedological conditions which interfere the mountain forests represent the increasing danger of the drought for the spruce.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Antal J. Špánik F. 1999. Hydrológia poľnohospodárskej krajiny [Hydrology of agricultural land]. Nitra: Slovenská poľnohospodárska univerzita. 250 p.

  • Bublinec E. 1994. Koncentrácia akumulácia a kolobeh prvkov v bukovom a smrekovom ekosystéme [Concentration accumulation and cycle of elements in beech and spruce ecosystem]. Acta Dendrologica. Bratislava: Veda. 132 p.

  • Drbal J. 1965. Praktikum melioračního půdoznalství [Practicals of amelioration soil science]. Praha: SPN. 265 p.

  • Hraško J. Červenka L. Facek Z. Komár J. Němeček J. Pospíšil F. Sirový V. 1962. Rozbory pôd [Analysis of soils]. Bratislava: Slovenské vydavateľstvo pôdohospodárskej literatúry. 342 p.

  • Klika J. Novák V. Gregor J. 1954. Praktikum fytocenologie ekologie klimatologie a půdoznalství [Practicals of phytocenology ecology climatology and soil science]. Praha: ČSAV. 773 p.

  • Kmeť J. Ditmarová Ľ. Priwitzer T. Kurjak D. 2009. Physiological aspects of yellowing of spruce advanced regeneration in area of the Kysucké Beskydy Mts. Beskydy -The Beskids Bulletin 2: 29-37.

  • Konôpka B. 2009. Differences in pine root traits between Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.). A case study in the Kysucké Beskydy Mts. Journal of Forest Science 55: 556-566.

  • Kozlowski T.T. Kramer P.J. Pallardy S.G. 1991. The physiological ecology of woody plants. San Diego: Academic Press. 657 p.

  • Kutílek M. 1966. Vodohospodářská pedologie [Water management related soil science]. Praha: SNTL. 275 p.

  • Kutílek M. 1971. Ekologická klasifikace půdní vlhkosti [Ecological classification of soil moisture content]. Vodní Hospodářství 9: 250-256.

  • Lorz C. Furst Ch. Galic Z. Matjasic D. Podrazsky V. Potocic N. Simoncic P. Strauch M. Vacik H. Makeshin F. 2010. GIS-based probability assessment of natural hazards in forested landscapes of Central and South-Eastern Europe. Environmental Management 46: 920-930.

  • Persson H. Fircks Y.V. Majdi H. Nilsson L.O. 1995. Root distribution in a Norway spruce (Picea abies [L.] Karst.) stand subjected to drought and ammonium-sulphate application. Plant and Soil 168-169: 161-165.

  • Priwitzer T. Střelcová K. Kmeť J. 2003. Ekofyziologické procesy lesných drevín [Ecophysiological processes of forest tree species]. In Minďáš J. Škvarenina J. (eds). Lesy Slovenska a globálne klimatické zmeny. Zvolen: EFRA Lesnícky výskumný ústav p. 44-49.

  • Střelcová K. Kučera J. Fleischer P. Giorgi S. Gömöryová E. Škvarenina J. Ditmarová Ľ. 2009. Canopy transpiration of mountain mixed forest as a function of environmental conditions in boundary layer. Biologia 64: 507-511.

  • Šach F. Švihla V. Černohous V. Kantor P. 2014. Management of mountain forests in the hydrology of a landscape the Czech Republic - Review. Journal of Forest Science 60: 42-50.

  • Škvarenina J. Tomlain J. Križová E. 2002. Klimatická vodní bilance vegetačních stupňů na Slovensku [Climatic water balance of vegetation zones in Slovakia]. Meteorologické Zprávy 55 (4): 103-109.

  • Šútor J. 1994. Voda v zóne aerácie III. Vodný zdroj prírodného zdroja [Water in the aeration zone III. Water resource in natural environment]. In Zborník Voda pre život. Bratislava: MPH SR VÚVH p. 123-128.

  • Šútor J. Gomboš M. Mati R. 2005. Kvantifikácia pôdneho sucha [Quantification of soil drought]. In Transport vody chemikálií a energie v systéme pôda - rastlina - atmosféra. voda. 13. posterový deň s medzinárodnou účasťou a Deň otvorených dverí na ÚH SAV. 12. november 2009. Zborník recenzovaných príspevkov. Bratislava: Ústav hydrológie SAV Geofyzikálny ústav SAV p. 515-523.

  • Tužinský L. 2004. Vodný režim lesných pôd [Water regime of forest soils]. Zvolen: Technická univerzita. 101 p.

  • Verbeek H. Steppe K. Nadezdhina N. Op De Beek M. Deckmyn G. Meirsonne L. Lemeur R. Čermák. J. Ceulemans R. Janseens I.A. 2007. Model analysis of the effects of atmospheric drivers in storage water use in Scots pine. Biogeosciences 4: 657-671.

Search
Journal information
Impact Factor


CiteScore 2018: 0.75

SCImago Journal Rank (SJR) 2018: 0.2
Source Normalized Impact per Paper (SNIP) 2018: 0.511

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 190 106 2
PDF Downloads 98 64 5