Colonization of decomposing Sphagnum moss litter by mycorrhizal roots in two types of peatland ecosystems

Open access

Abstract

During a 35-month study on the decomposition of Sphagnum moss litter in poor fen and pine bog forest, an intensive colonization of litter-bags by mycorrhizal roots was observed during the decomposition process. Content of mycorrhizal roots in litter-bags, expressed as % mass of roots, was generally increasing during the decomposition in pine bog forest, and fluctuating during decomposition on poor fen, although in both cases the results were statistically insignificant. Two morphotypes of ericoid roots and two morphotypes of ectomycorrhizal roots were recorded from litter-bags on poor fen during the decomposition experiment, while in pine bog forest one morphotype of ericoid and nine morphotypes of ectomycorrhizal roots were recorded. Molecular identification of mycorrhizal roots succeeded only in the case of one ericoid and six putatively ectomycorrhizal morphotypes. Most morphotypes were recorded only once during the whole 35-month decomposition period, and only one ericoid and one ectomycorrhizal morphotypes were shared between the poor fen and pine bog forest communities

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aučina A. Rudawska M. Leski T. Ryliškis D. Pietras M. & Riepšas E. 2011. Ectomycorrhizal fungal communities on seedlings and conspecific trees of Pinus mugo grown on the coastal dunes of the Curonian Spit in Lithuania. Mycorrhiza 21: 237-245.

  • Budziszewska J. Szypuła W. Wilk M. & Wrzosek M. 2011. Paraconiothyrium babiogorense sp. nov. a new endophyte from fir club moss Huperzia selago (Huperziaceae). Mycotaxon 115: 457-468.

  • Chalot M. & Brun A. 1998. Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiology Reviews 22:21-44.

  • Conn C. & Dighton J. 2000. Litter quality influences on decomposition ectomycorrhizal community structure and mycorrhizal root surface acid phosphatase activity. Soil Biology and Biochemistry 32:489 496.

  • Deckmyn G. Meyer A. Smits M.M. Ekblad A. Grebenc T. Komarov A. & Kraigher H. 2014. Simulating ectomycorrhizal fungi and their role in carbon and nitrogen cycling in forest ecosystems. Canadian Journal of Forest Research 44:535-553.

  • Kõljalg U. Nilsson R.H. Abarenkov K. Tedersoo L. Taylor A.F.S. Bahram M. Bates S.T. Bruns T.D. Bengtsson-Palme J. Callaghan T.M. Douglas B. Drenkhan T. Eberhardt U. Dueñas M. Grebenc T. Griffith G.W. Hartmann M. Kirk P.M. Kohout P. Larsson E. Lindahl B.D. Lücking R. Martín M.P. Matheny P.B. Nguyen N.H. Niskanen T. Oja J. Peay K.G. Peintner U. Peterson M. Põldmaa K. Saag L. Saar I. Schüßler A. Scott J.A. Senés C. Smith M.E. Suija A. Taylor D.L. Telleria M.T. Weiß M. & Larsson K-H. 2013. Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology DOI: 10.1111/mec.12481.

  • Read D.J. Leake J.R. & Perez-Moreno J. 2004. Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Canadian Journal of Botany 82: 1243-1263.

  • Schoch C.L. Seifert K.A. Huhndorf S. Robert V. Spouge J.L. Levesque C.A. & Chen W. Fungal Barcoding Consortium 2012. The nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proceedings of the National Academy of Sciences USA 109: 6241-6246.

  • Selosse M.A. Dubois M.P. & Alvarez N. 2009. Do Sebacinales commonly associate with plant roots as endophytes? Mycological Research 113: 1062-1069.

  • Selosse M.A. Setaro S. Glatard F. Richard F. Urcelay C. Weiß M. 2007. Sebacinales are common mycorrhizal associates of Ericaceae. New Phytologist 174: 864-878.

  • Smith S.E. & Read D.J. 2008. Mycorrhizal Symbiosis. Third Edition. Academic Press San Diego CA.

  • Summerbell R.C. 2005. Root endophyte and mycorrhizosphere fungi of black spruce Picea mariana in a boreal forest habitat: influence of site factors on fungal distributions. Studies in Mycology 53: 121-145.

  • Talbot J.M. Allison S.D. & Treseder K.K. 2008. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Functional Ecology 22: 955-963.

  • Thormann M.N. 2006. The role of fungi in boreal peatlands. In: Wieder R.K. Vitt D.H. (eds) Boreal Peatland Ecosystems. Ecological Studies 188 Springer-Verlag Berlin Germany pp. 101-123.

  • Thormann M.N. Currah R.S. & Bayley S.E. 1999. The mycorrhizal status of the dominant vegetation along a peatland gradient in southern boreal Alberta Canada. Wetlands 19: 438-450.

  • Unestam T. 1991. Water repellency mat formation and leaf-stimulated growth of some ectomycorrhizal fungi. Mycorrhiza 1:13-20. UNITE database (http://unite.ut.ee/) Weiß M. Selosse M.A. Rexer K.H. Urban A. & Oberwinkler F. 2004. Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with broad mycorrhizal potential. Mycological Research 108(9): 1003-1010.

  • Weiß M. Sýkorová Z. Garnica S. Riess K. Martos F. Krause C. Oberwinkler F. Bauer R. & Redecker D. 2011. Sebacinales Everywhere: previously overlooked Ubiquitous fungal endophytes. PLoSONE 6(2):e16793.doi:10.1371/journal.pone.0016793

  • White T.J. Bruns T.D. Lee S. & Taylor J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A. Gelfand D.H. Sninsky J.J. White T.J. (eds) PCR Protocols: a guide to methods and applications. Academic Press NewYork pp. 315-322.

  • Zhu W. & Ehrenfeld J.G. 1996. The effects of mycorrhizal roots on litter decomposition soil biota and nutrients in a spodosolic soil. Plant and Soil 179: 109-118.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 239 147 1
PDF Downloads 103 68 1