The Model of the Production Process for the Quality Management

Open access


This article is a result of the research on the models of the production processes for the quality management and their identification. It discusses the classical model and the indicators for evaluating the capabilities by taking as its starting point the assumption of the normal distribution of the process characteristics. The division of the process types proposed by ISO 21747:2006 standard introducing models for non-stationary processes is presented. A general process model that allows in any real case to precisely describe the statistical characteristics of the process is proposed. It gives the opportunity for more detailed description, in comparison to the model proposed by ISO 21747:2006 standard, of the process characteristics and determining its capability. This model contains the type of process, statistical distribution, and the method for determining the capability and performance (long-term capability) of the process. One of the model elements is proposed, own classification and resulting set of process types. The classification follows the recommendations of ISO 21747:2006 introducing models for the non-stationary processes. However, the set of the process types allows, beyond a more precise description of the process characteristics, its usage to monitor the process.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Alot Z. Izdebski W. 2015. Identification of model of the production process for the purposes of quality management. In: Материалы докладов Международной научно-практи- ческой конференции “Социально-экономи- ческое развитие организаций ирегионов Беларуси: эффективность иинновации” (ed. Ванкевич Е.В. Шарстнев В.Л. Касаева Т.В. Прокофьева Н.Л. Савицкая Т.Б. Яшева Г.А.). Витебск: УО”ВГТУ” pp.84-96.

  • [2] DaimlerChrysler Corporation Ford Motor Company General Motors Corporation 2005. Statistical Process Control Southfield. 2nd Edition. Ml: Automotive Industry Action Group March 2005.

  • [3] Dietrych E. Schulze A. 2010. Statistical Procedures for Machine and Process Qualification. Six Edition. München: Hanser Fachbuchverlag.

  • [4] ISO 21747:2006. Statistical method - Process performance and capability statistics for measured quality characteristics. Geneva.

  • [5] ISO 7870-2:2013. Control charts. Part 2: Shewhart control charts. Geneva.

  • [6] ISO/TR 22514-4:2007. Statistical method in process management. Capability and performance. Part 4; Process capability estimates and performance measures. Geneva.

  • [7] Kotz S. Johnson N. 1993. Process Capability Indices. London New York: Chapman & Hall.

  • [8] Leksykon Zarządzania (Lexicon of Management) 2007. Warszawa: Wydawnictwo Difin.

  • [9] Montgomery D.C. 2009. Introduction to Statistical Quality Control. Sixth Edition. New York: John Wiley & Sons Inc.

  • [10] Montgomery D.C. Runger G.C. 2003. Applied Statistics and Probability for Engineers. Third Edition. New York: John Wiley & Sons Inc.

  • [11] Oakland J.S. 2003. Total Quality Management - text with cases. Third edition. Burlington: Butterworth- Heinemann.

  • [12] Oakland J.S. 2014. Total Quality Management and Operational Excellence: Text with Cases. Fourth Edition. New York Abingdon Oxon: Routledge.

  • [13] Oakland J.S. 2003. Statistical Process Control. Fifth Edition. Oxford - Burlington: Butterworth- Heinemann.

  • [14] PN-EN ISO 9000 2006. Systemy zarządzania jakością. Podstawy i terminologia (Quality Management Systems. Fundamentals and Vocabulary). Warszawa: PKN.

  • [15] PN-ISO 3534-2:2010. Statystyka. Słownik i symbole. Część 2: Statystyka stosowana (Statistics. Glossary and symbols. Part 2.: Applied statistics). Warszawa: PKN.

  • [16] PN-ISO 8258+AC1:1996. Karty kontrolne Shewharta (Shewhart control charts). Warszawa: PKN.

  • [17] Taguchi G. Elsayed E. Hsiang T. 1989. Quality Engineering in Production Systems. Singapore: McGraw-Hill Book Co.

  • [18] Tkaczyk S. Kowalska-Napora E. 2012. Strategia Zarządzania Jakością (Quality Management Strategy). Warszawa: Wydawnictwo Difin.

  • [19] Yang K. El-Haik B. 2003. Design for Six Sigma. A Roadmap for Product Development. McGraw - Hill.

Journal information
Impact Factor

CiteScore 2018: 0.44

SCImago Journal Rank (SJR) 2018: 0.195
Source Normalized Impact per Paper (SNIP) 2018: 0.326

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 717 370 21
PDF Downloads 372 233 10