MODIFICATION OF SHAPLEY VALUE AND ITS IMPLEMENTATION IN DECISION MAKING

Open access

Abstract

The article presents a solution of a problem that is critical from a practical point of view: how to share a higher than usual discount of $10 million among 5 importers. The discount is a result of forming a coalition by 5 current, formerly competing, importers. The use of Shapley value as a concept for co-operative games yielded a solution that was satisfactory for 4 lesser importers and not satisfactory for the biggest importer. Appropriate modification of Shapley value presented in this article allowed to identify appropriate distribution of the saved purchase amount, which according to each player accurately reflects their actual strength and position on the importer market. A computer program was used in order to make appropriate calculations for 325 permutations of all possible coalitions. In the last chapter of this paper, we recognize the lasting contributions of Lloyd Shapley to the cooperative game theory, commemorating his recent (March 12, 2016) descent from this world.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Aumann R. Dreze J. 1975. Solutions of cooperative games with coalition structures. International Journal of Game Theory (4) pp.180-192.

  • [2] Aumann R. Hart S. 1994. Handbook of Game Theory with Economic Applications Vol. 2. North-Holland: Elsevier.

  • [3] Aumann R. Hart S. 2002. Handbook of Game Theory with Economic Applications Vol. 3. North-Holland: Elsevier.

  • [4] Aumann R. Heifetz A. Incomplete Information. In: R. Aumann and S. Hart eds. 2002. Handbook of Game Theory with Economic Applications Vol. 3. North-Holland: Elsevier pp.1665-1685.

  • [5] Aumann R. Myerson R. 2005. Endogenous Formation of Links Between Players and of Coalitions: An Application of the Shapley Value. In: Roth A. Shapley Value - Essays in Honor of L. Shapley. Cambridge: Cambridge Univ. Press pp.175-194.

  • [6] Avenhaus R. von Stengel B. and Zamir S. Inspection Games. In: R. Aumann and S. Hart eds. 2002. Handbook of Game Theory with Economic Applications Vol. 3. North-Holland: Elsevier pp.1947-1984.

  • [7] Banzhaf J.F. III 1965. Weighted Voting Doesn’t Work: A Mathematical Analysis. Rutgers Law Review 19 pp.317-343.

  • [8] Banzhaf J.F. III 1968. One Man 3312 Votes: A Mathematical Analysis of the Electoral College. Villanova Law Review 13 pp.303-346.

  • [9] Billera L. Heath D. and Raanan J. 1978. Internal Telephone Billing Rates: A Novel Application of Non-Atomic Games Theory. Operations Research 26 pp.956-965.

  • [10] Blackwell D. and Ferguson T. 1968. The Big Match. Annals of Mathematical Statistics 39 pp.159-163.

  • [11] Bondareva O. 1963. Some Applications of Linear Programming Methods to the Theory of Cooperative Games. Problemy Kibernetiki 10 pp.119-139 (in Russian).

  • [12] Brams S. Lake M. 1977. Power and Satisfaction in a Representative Democracy. In: Game Theory and Political Science Conference. Hyannis MA. USA.

  • [13] Carreras F. Owen G. 1988. Evaluation in Catalonian Parliament 1980-1984. Mathematical Social Science 15 pp.87-92.

  • [14] Casajus A. Huettner F. 2013. Null Players Solidarity and the Egalitarian Shapely Values. Journal of Mathematical Economics 49(1) pp.58-61.

  • [15] Colleman J. 1971. Control of Collectivities and Power of a Collectivity to Act. In: Social Choice B. Lieberman ed. Gordon and Breach pp.269-300.

  • [16] Deegal J. Packel E. 1979. A New Index of Power for Simple n-Person Games. International Journal of Game Theory 7 pp.113-123.

  • [17] Dubey P. Shapley L. 1979. Mathematical Properties of the Banzhaf Power Index. Mathematics of Operations Research 4 pp.99-131.

  • [18] Dutta P. Radner R. Moral Hazard. In: R. Aumann and S. Hart eds. 1994. Handbook of Game Theory with Economic Applications Vol.2. North-Holland: Elsevier pp.870-900.

  • [19] Felsenthal D. Machover M. 1977. The Weighted Rule in the EU’s Council of Ministers 1958-1995; Intentions and Outcomes. Electoral Studies (16) pp.33-47.

  • [20] Friedman A. 1994. Differential Games. In: R. Aumann and S. Hart eds. Handbook of Game Theory with Economic Applications Vol. 2. North-Holland: Elsevier pp.782-798.

  • [21] Gale D. Shapley L. 1962. College Admissions and Stability of Marriage. American Mathematical Monthly 69 pp.9-15.

  • [22] Geanakoplos J. 1994. Common Knowledge. In: R. Aumann and S. Hart eds. Handbook of Game Theory with Economic Applications Vol. 2. North-Holland: Elsevier pp.1438-1495.

  • [23] Gillette D. 1957. Stochastic Games with Zero Stop Probabilities. In: Contribution to the Theory of Games. M. Dresher A. Tucker and P. Wolfe eds. vol. III Ann. Math. Studies 39. Princeton: Princeton University Press pp.179-187.

  • [24] Gillies D. 1959. Solutions to General non-zerosum Games. In: Contributions to the Theory of Games Vol. 4 Ann. Math. Studies (40) eds. A. Tucker and D. Luce. Princeton: Princeton University Press pp.47-85.

  • [25] Gillies D. 1953a. Locations of Solutions. In: Report of an Informal Conference on the theory of N-person games ed. H.W. Kuhn Princeton University.

  • [26] Gillies D. 1953b. Some Theorems on N-person Games Ph. D. dissertation. Department of Mathematics Princeton University.

  • [27] Holler M. 1982. Forming Coalitions and Measuring Voting Power. Political Studies 30(2) pp.266-231.

  • [28] Holler M. Packel E. 1983. Power Luck and the Right Index. Journal of Economics (Zeitschrift fur Nationalekonomie) 43(1) pp.21-29.

  • [29] Holler M. 1984. A Public Good Power Index. In: Coalitions and Collective Actions ed. M. Holler. Wurzburg and Wein: Physica-Verlag pp.51-59.

  • [30] Holler M. Owen G. 2013. Power Indices and Coalition Formation. Springer Science & Business Media (386 pp.).

  • [31] Holler M. Li X. 1995. From Public Good Index to Public Value: An Axiomatic Approach and Generalization. Control & Cybernetics 24(2) pp.257-270.

  • [32] Holler M. 1997. Power Monotocity and Expectations. Control & Cybernetics 26(4) pp.605-608.

  • [33] Homenda W. 2009. Decision Making in Voting Games: An Insight into Theory and Practice. In: MDAI’09 Proceedings of the 6th International Conference on Modelling Decisions for Artificial Intelligence. Awaji Island Japan Nov. 30 - Dec. 02 pp.60-71.

  • [34] Johnston R. 1978. On the Measurement of Power: Some Reactions to Laver. Environment and Planning A 10 pp.907-914.

  • [35] Lucas W. 1983. Measuring Power in Weighted Voting Systems. In: Political and Related Models S. Brams W. Lucas P. Straffin eds. Berlin: Springer pp.183-238.

  • [36] Malawski M. Wieczorek A. and Sosnowska H. 2006. Konkurencja i kooperacja - teoria gier w ekonomii i naukach społecznych (Competition and Cooperation - Theory of Games in Economics and Social Science). Warszawa: Wydawnictwo Naukowe PWN.

  • [37] Malawski M. 2013. Procedural Values for Cooperative Games. International Journal of Game Theory 42(1) pp.305-324.

  • [38] Mann I. Shapley L. 1960. Values of Large Games IV: Evaluating the Electoral College by Monte Carlo Techniques. RM-2651 Rand Corporation Santa Monica.

  • [39] Mann I. Shapley L. 1962. Values of Large Games VI: Evaluating the Electoral College Exactly. RM-3158 Rand Corporation Santa Monica.

  • [40] Mercik J. Kolodziejczyk W. 1986. Taxonomy Approach to a Cabinet Formation. Mathematical Social Science 12 pp.159-167.

  • [41] Mercik J. 1997. Power and Expectations. Control & Cybernetics 26(4) pp.617-622.

  • [42] Mercik J. 1999. Siła i oczekiwania; Decyzje grupowe (Power and Expectations; Group Deci sions). Warszawa-Wrocław: Wydawnictwo Naukowe PWN.

  • [43] Mercik J. 2013. Index of Power for Cabinet. In: Holler and Owen eds. Power Indices and Coalition Formation pp.371-380. New York: Springer Science+ Business Media.

  • [44] Mertens J-F. Neyman A. 1981. Stochastic Games. International Journal of game Theory 10 pp.53-66.

  • [45] Mertens J-F. 2002. Stochastic Games. In: R. Aumann and S. Hart eds. 2002. Handbook of Game Theory with Economic Applications Vol.3. North-Holland: Elsevier pp.1809-1827.

  • [46] Milnor J. Shapley L. 1978. Values of Large Games II: Oceanic Games. Mathematics of Operations Research 3 pp. 290-307; initially in: Rand Corporation RM-2649 Santa Monica 1961.

  • [47] Monderer D. Samet D. and Shapely L. 1992. Weighted Values and the Core. Journal of Political Economy 21 pp.27-39.

  • [48] Monderer D. Samet D. 2002. Variations on the Shapley Value. In: R. Aumann and S. Hart eds. 2002. Handbook of Game Theory with Economic Applications Vol. 3. North-Holland: Elsevier pp.2055-2075.

  • [49] Moriariti S. ed. 1983. Joint Cost Allocation. Tulsa: Univ. of Oklahoma Press.

  • [50] Nowak A. Radzik T. 1994. A Solidarity Value for n-Person Transferable Utility Games. International Journal of Game Theory 23(1) pp.43-48.

  • [51] Ott U. 2006. International Joint Ventures: An Interplay of Cooperative and Noncooperative Games under Incomplete Information. Houndmills Basingstoke: Palgrave Macmillan.

  • [52] Owen G. 1977. Values of Games with a Priori Unions. In: R. Henn and O. Moeschlin. Mathematical Economics and Game Theory. Berlin: Springer Verlag pp.76-88.

  • [53] Peleq B. 2005. Introduction to the Theory of Cooperative Games 2 ed. Berlin: Springer.

  • [54] Raghavan T. Non-sero-sum Two-Person Games. In: R. Aumann and S. Hart eds. 2002. Handbook of Game Theory with Economic Applications Vol. 3. North-Holland: Elsevier pp.1687-1718.

  • [55] Roth A. 1984. The Evolution of the Labor Market for Medical Interns and Residents: A Case Study in Game Theory Journal of Political Economy 92 pp.991-1016.

  • [56] Roth A. Sotomayor M. 1990. Two-Sided Matching: A Study in Game-Theoretic Modelling and Analysis. Econometric Society Monograph. Cambridge: Cambridge University Press.

  • [57] Roth A. 2005. The Shapley Value: Essays in Honor of Lloyd S. Shapley. Cambridge: Cambridge Univ. Press.

  • [58] Shapley L. 1953a. A Value for n-Person Games. In: eds. H.W. Kuhn and A.W. Tucker. Contributions to the Theory of Games Vol. 2. Ann. Math. Studies 28. Princeton: Princeton Univ. Press pp.307-317.

  • [59] Shapley L. 1953b. Adaptive and Non-Adaptive Set Functions. Ph.D. thesis. Department of Mathematics Princeton Univ.

  • [60] Shapley L. 1953c. Open Questions. In: ed. H.W. Kuhn. Report of an Informal Conference on the Theory of n-Person Games. Princeton University.

  • [61] Shapley L. 1953d. Quota Solutions of n-Person Games. In: eds. H.W. Kuhn and A.W. Tucker. Contributions to the theory of Games Vol. 2 Ann. Math. Studies 28 Princeton Univ. Press pp.343-359.

  • [62] Shapley L. 1953. Stochastic Games. Proceedings of the National Academy of Sciences 39 pp.1095-1100.

  • [63] Shapley L. Shubik M. 1954. A Method for Evaluating a Distribution of Power in a Committee System. American Political Science Review 48 pp.787-792.

  • [64] Shapley L. 1959. The Solution of a Symmetric Market Game. Annals of Mathematics Studies 40 pp.145-162.

  • [65] Shapley L. 1961a. Values of Large Games III: A Cooperation with 2 Large Stockholders. RM- 26-50 Rand Corporation Santa Monica.

  • [66] Shapley L. 1961b. Values of Large Games IV: An 18-Person Market Game. RM-2860 Rand Corporation Santa Monica.

  • [67] Shapley L. 1962a. Compound Simple Games I: Solutions of Sums and Products. RM -3192-PR The Rand Corporation Santa Monica.

  • [68] Shapley L. 1963). Compound Simple Games II: Some General Composition Theorems. RM - 3643-PR The Rand Corporation Santa Monica.

  • [69] Shapley L. 1964a. Solutions of Compound Simple Games I: Solutions of Sums and Products. Annals of Mathematics Studies 52 pp.267-305.

  • [70] Shapley L. 1964b. Values of Large Games VII: A General Exchange Economy with Money. RM-4248 Rand Corporation Santa Monica.

  • [71] Shapley L. 1967a. On Balanced Sets and Cores. Naval Research Logistics Quarterly 14 pp.453-460.

  • [72] Shapley L. 1967b. On Committees. In: eds. F. Zwicky and A. Wilson. New Methods of Thought and Procedure. New York: Springer pp.246-270.

  • [73] Shapley L. Shubik M. 1969. On Market Games. Journal of Economic Theory 1 pp.9-25.

  • [74] Shapley L. 1971. Cores of Convex Games. International Journal of Game Theory 1 pp.11-26.

  • [75] Shapley L. Shubik M. 1972. The assignment Game I: The Core. International Journal of Game Theory 1 pp.111-130.

  • [76] Shapley L. 1977. A Comparison of Power Indices and a Nonsymmetric Generalization. Paper P-5872. The Rand Corporation Santa Monica.

  • [77] Shapley L. Shapiro N. 1978. Values of Large Games I: A Limit Theorem. Mathematics of Operations Research 3 pp.1-9; initially in Rand Corporation RM-2648 Santa Monica (1960).

  • [78] Shubik M. 1962. Incentives Decentralized Control the Assignment of Joint Costs and Internal Pricing. Management Science 8(3) pp.325-343.

  • [79] Shubik M. 1982. Games Theory in the Social Science. Cambridge: MIT Press.

  • [80] Sosnowska H. 1997. Coalitions and Rationality Control & Cybernetics 26(4) pp.623-624.

  • [81] Sosnowska H. 2014. Banzhaf Value for Games Analyzing Voting with Rotation. Operations Research & Decisions 24(4) pp.75-88.

  • [82] Sosnowska H. 2016. Approval Voting as a Method of Prediction in Political Votings. Case of Polish Elections. LNCS Transactions on Computational Collective Intelligence 23 pp.17-28.

  • [83] Steunenberg B. Schmidtchen D. and Kobolt C. 1999. Strategic Power in the European Union: Evaluating the Distribution of Power in Policy Games. Journal of Theoretical Politics 11(3) pp.339-366.

  • [84] Thomas L. 1986. Games Theory & Applications. Chichester: Ellis Horwood.

  • [85] Weirich P. 2012. Collective Rationality: Equilibrium in Cooperative Games. Oxford: Oxford Univ. Press.

  • [86] Young H. 1994. Cost Allocation. In: Aumann and Hart eds. Handbook of Game Theory with Economic Applications Vol.2. North-Holland: Elsevier pp.1194-1230.

  • [87] Zaremba L. 1979. On the Existence of Value in the Varaiya-Lin Sense in Differential Games of Pursuit. Journal of Optimization Theory & Applications 29 pp.135-145.

  • [88] Zaremba L. 1980. On the Existence of Value in Pursuit-Evasion Games with Restricted Coordinates Journal of Optimization Theory & Applications Vol. 30 pp.451-470.

  • [89] Zaremba L. 1982. Existence of Value in Differential Games with Fixed Time Duration. Journal of Optimization Theory & Applications Vol. 38 pp.581-598.

  • [90] Zaremba L. 1984a. Existence of Value in Games Governed by Generalized Differential Equations. Systems & Control Letters Vol. 4 pp.237-341

  • [91] Zaremba L. 1984b. Existence of Value in Generalized Pursuit-Evasion Games. SIAM Journal on Control & Optimization Vol. 22 pp.894-901.

  • [92] Zaremba L. 1986. Existence Theorems for Games of Survival. Journal of Optimization Theory & Applications Vol. 48 pp.431-446.

  • [93] Zaremba L. 1989. Optimality Principles of Dynamic Programming in Differential Games. Journal of Mathematical Analysis and Applications Vol. 138 pp.43-51.

  • [94] Zaremba L. Zaremba C. 2010. Rozwiązanie uogólnionego problemu optymalnej alokacji zasobów (Solution to Generalized Optimal Resource Allocation Problem). Zarządzanie Zmianami - Biuletyn Naukowy i Informacyjny Wyższej Szkoły Zarządzanie - the Polish Open University 6 pp.1-19.

Search
Journal information
Impact Factor


CiteScore 2018: 0.44

SCImago Journal Rank (SJR) 2018: 0.195
Source Normalized Impact per Paper (SNIP) 2018: 0.326

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 421 163 10
PDF Downloads 193 116 3