Exogenous isoleucine and phenylalanine interact with abscisic acid-mediated anthocyanin accumulation in grape

Open access

Abstract

Berry skin colour is a crucial determinant of red/black grape berry quality. We investigated the effects of combination treatments with amino acids and a low concentration of ABA on anthocyanin accumulation in grapes. Among the amino acids tested, isoleucine and phenylalanine resulted in high anthocyanin contents in grape cell cultures. The combination treatments with isoleucine or phenylalanine, and a low concentration of ABA enhanced anthocyanin accumulation in grape cells and detached grape berries. The combination treatment with isoleucine, but not with phenylalanine, and ABA upregulated MybA1 expression. Field-grown grapevines received combination treatments with isoleucine or phenylalanine, and ABA in two growing seasons. In the 2015 growing season, the combination treatments with isoleucine or phenylalanine, and a low concentration of ABA accelerated anthocyanin accumulation in grape berry skins of field-grown grapevines on days 10 and 31 post treatment. The effects on anthocyanin accumulation became negligible at harvest. The effect of the combination treatment with phenylalanine and a low concentration of ABA on anthocyanin accumulation was masked in the 2017 growing season due to the unexpected stimulation of anthocyanin accumulation by the low concentration of ABA, although the combination treatment accelerated anthocyanin accumulation on days 3 and 10 post treatment. Taken together, the results suggested that exogenous isoleucine and phenylalanine interacted with ABA-mediated anthocyanin accumulation in grape berry skins of field-grown grapevines when the activity of ABA used to treat the grapevines was inadequate.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Arita K. Honma T. Suzuki S. 2017. Comprehensive and comparative lipidome analysis of Vitis vinifera cv. Pinot Noir and Japanese indigenous V. vinifera cv. Koshu grape berries. PLoS ONE 12 e0186952.

  • Bakker J. Preston N.W. Timberlake C.F. 1986. The determination of anthocyanins in aging red wines: comparison of HPLC and spectral methods. Am. J. Enol. Vitic. 37 121-126.

  • Ban T. Ishimaru M. Kobayashi S. Goto-Yamamoto N. Horiuchi S. 2003. Abscisic acid and 24-dichlorophenoxyacetic acid affect the expression of anthocyanin biosynthetic pathway genes in ‘Kyoho’ grape berries. J. Hortic. Sci. Biotechnol. 78 586-589.

  • Boss P.K. Davies C Robinson S.P. 1996. Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiol. 111 1059-1066.

  • Brar H.S. Singh Z. Swinny E. Cameron I. 2008. Girdling and grapevine leafroll associated viruses affect berry weight colour development and accumulation of anthocyanins in ‘Crimson Seedless’ grapes during maturation and ripening. Plant Sci. 175 885-897.

  • Cai Z. Knorr D. Smetanska I. 2012. Enhanced anthocyanins and resveratrol production in Vitis vinifera cell suspension culture by indanoylisoleucine N-linolenoyl-L-glutamine and insect saliva. Enzyme Microb. Technol. 50 29-34.

  • Calvo P. Nelson L. Kloepper J.W. 2014. Agricultural uses of plant biostimulants. Plant Soil 383 3-41.

  • Carreño J. Faraj S. Martinez A. 1998. Effects of girdling and covering mesh on ripening colour and fruit characteristics of ‘Italia’ grapes. J. Hortic. Sci. Biotech. 73 103-106.

  • Castellarin S.D. Gaspero G.D. Marconi R. Nonis A. Peterlunger E. Paillard S. et al. 2006. Colour variation in red grapevines (Vitis vinifera L.): genomic organisation expression of flavonoid 3’-hydroxylase flavonoid 3’5’-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. BMC Genomics 7 1471-1488.

  • Castellarin S.D. Gaspero D.G. 2007. Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. BMC Plant Biol. 30 46-55.

  • De Orduña R.M. 2010. Climate change associated effects on grape and wine quality and production. Food Res. Int. 43 1844-1855.

  • Deluc L.G. Grimplet J. Wheatley M.D. Tillett R.L. Quilici D.R. Osborne C. et al. 2007. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics 8 429.

  • Dixon R.A. Achnine L. Kota P. Liu C.J. Reddy M.S. Wang L. 2002. The phenylpropanoid pathway and plant defence-a genomics perspective. Mol. Plant Pathol. 3 371-390.

  • Enoki S. Hattori T. Ishiai S. Tanaka S. Mikami M. Arita K. et al. 2017. Vanillylacetone up-regulates expression of genes leading to anthocyanin accumulation by inducing endogenous abscisic acid in grape cell cultures. J. Plant Physiol. 219 22-27.

  • Gagné S. Estève K. Deytieux C. Saucier C. Gény L. 2006. Influence of abscisic acid in triggering “véraison” in grape berry skins of Vitis vinifera L. cv. Cabernet Sauvignon. J. Int. Sci. Vigne Vin. 40 7-14.

  • Gaiotti F. Pastore C. Filippetti I. Lovat L. Belfiore N. Tomasi D. 2018. Low night temperature at véraison enhances the accumulation of anthocyanins in Corvina grapes (Vitis vinifera L.). Sci. Rep. 8 8719.

  • Garde-Cerdán T. López R. Portu J. González-Arenzana L. López-Alfaro I. Santamaría P. 2014. Study of the effects of proline phenylalanine and urea foliar application to Tempranillo vineyards on grape amino acid content. Comparison with commercial nitrogen fertilisers. Food Chem. 163 136-141.

  • Gąstoł M. 2015. Vineyard performance and fruit quality of some interspecific grapevine cultivars in cool climate conditions. Folia Hort. 27 21-31.

  • González-Arenzana L. Portu J. López R. Garijo P. Garde-Cerdán T. López-Alfaro I. 2017. Phenylalanine and urea foliar application: Effect on grape and must microbiota. Int. J. Food Microbiol. 245 88-97.

  • Guidoni S. Allara P. Schubert A. 2002. Effect of cluster thinning on berry skin anthocyanin composition of Vitis vinifera cv. Nebbiolo. Am. J. Enol. Vitic. 53 224-226.

  • Jones G.V. White M.A. Cooper O.R. Storchmann K. 2005. Climate change and global wine quality. Clim. Change 73 319-43.

  • Kataoka I. Sugiura A. Utsunomiya N. Tomana T. 1982. Effect of abscisic acid and defoliation on anthocyanin accumulation in Kyoho grapes (Vitis vinifera L.×V. labruscana Bailey). Vitis 21 325-332.

  • Kennedy J.A. Saucier C. Glories Y. 2006. Grape and wine phenolics: history and perspective Am. J. Enol. Vitic. 57 239-248.

  • Kobayashi S. Goto-Yamamoto N. Hirokawa H. 2004. Retrotransposon-induced mutations in grape skin color. Science 304 982.

  • Koshita Y. Yamane T. Yakushiji H. Azuma A. Mitani N. 2011. Regulation of skin color in ‘Aki Queen’ grapes: interactive effects of temperature girdling and leaf shading treatments on coloration and total soluble solids. Sci. Hortic. 129 98-101.

  • Koyama K. Sadamatsu K. Goto-Yamamoto N. 2010. Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Funct. Integr. Genomics 10 367-381.

  • MacDonald M.J. D’Cunha G.B. 2007. A modern view of phenylalanine ammonia lyase. Biochem. Cell Biol. 85 273-282.

  • Matus J.T. Loyola R. Vega A. Neira A.P. Bordeu E. Johnson P.A. et al. 2009. Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. J. Exp. Bot. 60 853-867.

  • Mikami M. Mori D. Masumura Y. Aoki Y. Suzuki S. 2017. Electrical stimulation: an abiotic stress generator for enhancing anthocyanin and resveratrol accumulation in grape berry. Sci. Hortic. 226 285-292.

  • Mori K. Goto-Yamamoto N. Kitayama M. Hashizume K. 2007. Loss of anthocyanins in red-wine grape under temperature. J. Exp. Bot. 58 1935-1945.

  • Mori K. Sugaya S. Gemma H. 2005. Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Sci. Hortic. 105 319-330.

  • Peppi M.C. Walker M.A. Fidelibus M.W. 2008. Application of abscisic acid rapidly upregulated UFGT gene expression and improved color of grape berries. Vitis 47 11-24.

  • Pilati S. Bagagli G. Sonego P. Moretto M. Brazzale D. Castorina G. et al. 2017. Abscisic acid is a major regulator of grape berry ripening onset: new insights into ABA signaling network. Front. Plant Sci. 8 1093.

  • Portu J. Gonzalez-Arenzana L. Hermosín-Gutiérrez I. Santamaría P. Garde-Cerdan T. 2015. Phenylalanine and urea foliar applications to grapevine: Effect on wine phenolic content. Food Chem. 180 55-63.

  • Portu J. López R. Baroja E. Santamaría P. Garde-Cerdán T. 2016. Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: Methyl jasmonate chitosan and yeast extract. Food Chem. 201 213-221.

  • Portu J. Santamaría P. López R. Garde-Cerdán T. 2017. Phenolic composition of Tempranillo grapes following foliar applications of phenylalanine and urea: A two-year study. Sci. Hortic. 219 191-199.

  • Romero-Cascales I. Ortega-Regules A. López-Roca J.M. Fernández-Fernández J.I. Gómez-Plaza E. 2005. Differences in anthocyanin extractability from grapes to wines according to variety. Am. J. Enol. Vitic. 56 212-219.

  • Rudell D.R. Mattheis J.P. Fan X. Fellman J.K. 2002. Methyl jasmonate enhances anthocyanin accumulation and modifies production of phenolics and pigments in Fuji’ Apples. J. Am. Soc. Hortic. Sci. 127 435-441.

  • Schuler G. Mithofer A. Baldwin I.T. Berger S. Ebel J. Santos J.G. et al. 2004. Coronalon: A powerful tool in plant stress physiology. FEBS Lett. 563 17-22.

  • Shan X. Zhang Y. Peng W. Wang Z. Xie D. 2009. Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. J. Exp. Bot. 60 3849-3860.

  • Smit I. Pfliehinger M. Binner A. Grossmann M. Horst W.J. Löhnertz O. 2014. Nitrogen fertilisation increases biogenic amines and amino acid concentrations in Vitis vinifera var. Riesling musts and wines. J. Sci. Food Agric. 94 2064-2072.

  • Spayd S.E. Tarara J.M. Mee D.L. Ferguson J.C. 2002. Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. Am. J. Enol. Vitic. 53 171-182.

  • Tarara J.M. Lee J. Spayd S.E. Scagel C.F. 2008. Berry temperature and solar radiation alter acylation proportion and concentration of anthocyanin in Merlot grapes. Am. J. Enol. Vitic. 59 235-247.

  • Tardaguila J. de Toda F.M. Poni S. Diago M.P. 2010. Impact of early leaf removal on yield and fruit and wine composition of Vitis vinifera L. Graciano and Carignan. Am. J. Enol. Vitic. 61 372-381.

  • Wheeler S. Loveys B. Ford C. Davies C. 2009. The relationship between the expression of abscisic acid biosynthesis genes accumulation of abscisic acid and the promotion of Vitis vinifera L. berry ripening by abscisic acid. Aust. J. Grape Wine Res. 15 195-204.

  • Yamakawa T. Kato S. Ishida K. Kodama T. Minoda Y. 1983. Production of anthocyanins by Vitis cells in suspension culture. Agric. Biol. Chem. 47 2185-2191.

  • Yokotsuka K. Nagao A. Nakazawa K. Sato M. 1999. Changes in anthocyanins in berry skins of Merlot and Cabernet Sauvignon grapes grown in two soils modified with limestone or oyster shell versus a native soil over two years. Am. J. Enol. Vitic. 50 1-12.

Search
Journal information
Impact Factor

Web of Science, IMPACT FACTOR 2018: 0.532

CiteScore 2018: 0.6

SCImago Journal Rank (SJR) 2018: 0.198
Source Normalized Impact per Paper (SNIP) 2018: 0.644

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 166 166 34
PDF Downloads 129 129 29