Antimicrobial activity of berries extracts of four Ribes species, their phenolic content and anthocyanin composition

Vidmantas Bendokas 1 , Antanas Šarkinas 2 , Daiva Jasinauskienë 2 , Nijolë Anisimovienë 3 , Šarûnë Morkûnaitë-Haimi 1 , Vidmantas Stanys 1  and Tadeušas Šikšnianas 1
  • 1 Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, , LT-54333, Babtai, Lithuania
  • 2 Food Institute of Kaunas, University of Technology, LT-51180, Kaunas, Lithuania
  • 3 Institute of Botany of Nature Research Centre, , LT-08662, Vilnius, Lithuania


Phenolic compounds are widespread in berries and determine their antimicrobial activity. The aim of our study was to establish the amounts of phenolic compounds and the anthocyanin composition in berries of four Ribes species, and to evaluate the effect of berry extracts on the growth of common Gram-positive and Gram-negative bacteria, and also yeasts isolated from food processing plants. The phenolic content and anthocyanin composition were estimated spectrometrically and by HPLC, respectively. The highest amount of phenolic compounds, and also anthocyanins, was found in extracts of R. aureum ‘Corona’. The anthocyanin content was the lowest in berries of R. aureum Au Gs-5, with equal amounts of delphinidins and cyanidins. Delphinidins were predominant (68.6%) in berries of R. nigrum ‘Ben Tirran’, while cyanidins dominated in R. uva-crispa. The berry extracts of R. aureum Au Gs-5 and R. uva-crispa ‘Lûðiai’ had the largest growth-suppressing effect on yeasts and most of the bacteria tested. All of the berry extracts suppressed the growth of pathogenic and conditionally pathogenic bacteria. The industrially important Lactococcus lactis was the most resistant to the Ribes berry extracts. There was no correlation between the amount of anthocyanins in the extracts and their antimicrobial properties. Extracts with a lower anthocyanin–to-phenolics ratio more effectively inhibited the growth of bacteria.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aldulaimi O., 2017. General overview of phenolics from plant to laboratory, good antibacterials or not. Pharmacogn. Rev. 11, 123-127.

  • Anisimovienë N., Rubinskienë M., Viðkelis P., Stackevièienë E., Stanys V., Ðikðnianas T. et al., 2009. Anthocyanins in currants, cherries, blueberries, and antioxidative activity of berry extracts. Zemdirbyste 96, 158-167.

  • Bishayee A., Mbimba T., Thoppil R.J., Háznagy-Radnai E., Sipos P., Darvesh A.S. et al., 2011. Anthocyaninrich black currant (Ribes nigrum L.) extract affords chemoprevention against diethylnitrosamine-induced hepatocellular carcinogenesis in rats. J. Nutr. Biochem. 22, 1035-1046.

  • Blando F., Gerardi C., Nicolleti J., 2004. Sour cherry (Prunus cerasus L.) anthocyanins as ingredients for functional foods. J. Biomed. Biotechnol. 5, 253-258.

  • Burger O., Ofek I., Tabak M., Weiss E.I., Sharon N., Neeman, I., 2000. A high molecular mass constituent of cranberry juice inhibits Helicobacter pylori adhesion to human gastric mucus. FEMS Immunol. Med. Microbiol. 29, 295-301.

  • Cisowska A., Wojnicz D., Hendrich A.B., 2011. Anthocyanins as antimicrobial agents of natural plant origin. Nat. Prod. Commun. 6, 149-156.

  • Cooke D., Steward W.P., Gescher A.J., Marczylo T., 2005. Anthocyanins from fruits and vegetables – Does bright colour signal cancer chemopreventive activity. Eur. J. Cancer. 41, 1931-1940.

  • Da Silva Pinto A.D.S., Kwon Y.I., Apostolidis E., Lajolo F.M., Genovese M.I., Shetty K., 2010. Evolution of red currants (Ribes rubrum L.), black currants (Ribes nigrum L.), red and green gooseberries (Ribes uva-crispa) for potential management of type 2 diabetes and hypertension using in vitro models. J. Food Biochem. 34, 639-660.

  • Daglia M., 2012. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 23, 174-181.

  • De Pascual-Teresa S., Sanchez-Ballesta M.T., 2008. Anthocyanins: from plant to health. Phytochem. Rev. 7, 281-299.

  • Del Rio D., Rodriguez-Mateos A., Spencer J.P.E., Tognolini M., Borges G., Crozier A., 2013. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antiox. Redox Signal. 18, 1818-1892.

  • Djordjević B., Savikin K., Zdunić G., Janković T., Vulić T., Oparnica C. et al., 2010. Biochemical properties of red currant varieties in relation to storage. Plant Foods Hum. Nutr. 65, 326-332.

  • Durst R.W., Wrolstad R., 2001. Separation and characterization of anthocyanins by HPLC. In: Current Protocols in Food Analytical Chemistry. R.E. Wrolstad (Ed.), Wiley, New York, USA, F1.3.1-F1.3.13.

  • Gatto, M.T., Falcocchio, S., Grippa, E., Mazzanti, G., Battinelli, L., Nicolosi, G. et al., 2002. Antimicrobial and anti-lipase activity of quercetin and its C2-C163-O-acyl-esters. Bioorg. Med. Chem. 10, 269-272.

  • Havsteen B.H., 2002. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 96, 67-202.

  • He J., Guisti M.M., 2010. Anthocyanins: natural colorants with health-promoting properties. Ann. Rev. Food Sci. Technol. 1, 163-187

  • Heinonen M., 2007. Antioxidant activity and antimicrobial effect of berry phenolics – a Finnish perspective. Mol. Nutr. Food Res. 51, 684-691.

  • Hjalmarsson I., Wallace B., 2007. Gooseberry and currant in Sweden: History and cultivar development. In: Plant Breeding Reviews Vol. 29. J. Janick (Ed.), John Wiley and Sons Inc., New Jersey, USA, 145-175.

  • Horbowicz M., Kosson R., Grzesiuk A., Dêbski H., 2008. Anthocyanins of fruit and vegetables – their occurence, analysis and role in human nutrition. Veg. Crop. Res. Bull. 68, 5-22.

  • Howell A.B., 2002. Cranberry proanthocyanidins and the maintenance of urinary tract health. Crit. Rev. Food Sci. Nutr. 42, 273-278.

  • Hummer K.E., Dale A., 2010. Horticulture of Ribes. Forest Pathol. 40, 251-263.

  • Jordheim M., Måge F., Andersen Ø.M., 2007. Anthocyanins in berries of Ribes including gooseberry cultivars with a high content of acylated pigments. J. Agric. Food Chem. 55, 5529-5535.

  • Khalid N., Fawad S.A., Ahmed I., 2011. Antimicrobial activity, phytochemical profile and trace minerals of black mulberry (Morus nigra L.) fresh juice. Pak. J. Bot. 43, 91-96.

  • Kim D.-O., Heo H.J., Kim, Y.J., Yang H.S., Lee C.Y., 2005. Sweet and sour cherry phenolics and their protective effects on neuronal cells. J. Agric. Food Chem. 53, 9921-9927.

  • Kong J.-M., Chia L.-S., Goh N.-K., Chia T.-F., Brouillard R., 2003. Analysis and biological activities of anthocyanins. Phytochemistry 64, 923-933.

  • Lee B.-B., Cha M.-R., Kim S.-Y., Park E., Park H.-R., Lee S.-C., 2007. Antioxidative and anticancer activity of extracts of cherry (Prunus serrulata var. spontanea) blossoms. Plant Foods Hum. Nutr. 62, 79-84.

  • Liegiûtë S., Majienë D., Trumbeckaitë S., Liobikas J., Bendokas V., Stanys V. et al., 2009. Anthocyanin composition and antimicrobial activity of sour cherry (Prunus cerasus L.) fruit extracts. Zemdirbyste 96, 141-148.

  • Liobikas J., Trumbeckaitë S., Bendokas V., Baniulis D., Majienë D., Kopustinskienë D.M. et al., 2009. Pro-apoptotic effect of black currant (Ribes nigrum L.) berry extracts on rat heart mitochondria, Zemdirbyste 96, 149-157.

  • Liu Y., Black M.A., Caron L., Camesano T.A., 2006, Role of cranberry juice on molecular-scale surface characteristics and adhesion behavior of Escherichia coli. Biotechnol. Bioeng. 93, 297-305.

  • Lugasi A., Hóvári J., Kádár G., Denes F., 2011. Phenolics in raspberry, blackberry and currant cultivars grown in Hungary. Acta Alimentaria 40, 52-64.

  • Maatta K., Kamal-Eldin A., Törrönen R., 2001. Phenolics compounds in berries of black, red, green and white currants (Ribes sp.). Antiox. Redox Signal. 3, 981-993.

  • Manach C., Scalbert A., Morand C., Remesy C., Jimenez L., 2004. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79, 727-747.

  • Mattila P.H., Hellström J., Karhu S., Pihlava J.-M. Veteläinen M., 2016. High variability in flavonoid contents and composition between different North-European currant (Ribes spp.) varieties. Food Chem. 204, 14-20.

  • Moyer R.A., Hummer K.E., Finn C.E., Frei B., Wrolstad R.E., 2002. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J. Agric. Food Chem. 50, 519-525.

  • Nohynek L.J., Alakomi H.-L., Kahkonen M.P., Heinonen M., Helander I.M., Oksman-Caldentey K.-M. et al., 2006. Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens. Nutr. Cancer 54, 18-32.

  • Nour V., Trandafir I., Ionica M.E., 2011. Ascorbic acid, anthocyanins, organic acids and mineral content of some black and red currant cultivars. Fruits 66, 353-362.

  • Ozgen M., Scheerens J.C., Reese R.N., Miller R.A., 2010. Total phenolic, anthocyanin contents and antioxidant capacity of selected elderberry (Sambucus canadensis L.) accessions. Pharmacogn. Mag. 6, 198-203.

  • Pantelidis G.E., Vasilakakis M., Manganaris G.A., Diamantidis G., 2007. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem. 102, 777-783.

  • Puupponen-Pimia R., Nohynek L., Meier C., Kahkonen M., Heinonen M., Hopia A. et al., 2001. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 90, 494-507.

  • Rodriguez-Mateos A., Vauzour D., Krueger C.G., Shanmuganayagam D., Reed J., Calani L. et al., 2014. Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch. Toxicol. 88, 1803-1853.

  • Savoia D., 2012. Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol. 7, 979-990.

  • Shipp J., Abdel-Aal E.-S.M., 2010. Food application and physiological effects of anthocyanins as functional food ingredients. Open Food Sci. J. 4, 7-22.

  • Slinkard K., Singleton V.L., 1977. Total phenol analysis: automation and comparison with manual methods. Am. J. Enol. Vitic. 28, 49-55.

  • Szajdek A., Borowska E. J., 2008. Bioactive compounds and health-promoting properties of berry fruits: A review. Plant Foods Hum. Nutr. 63, 147-156.

  • Xia E.Q., Deng G.F., Guo Y.J., Li H.B., 2010. Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 11, 622-646.

  • Yamanaka A., Kimizuka R., Kato T., Okuda K., 2004. Inhibitory effects of cranberry juice on attachment of oral streptococci and biofilm formation. Oral Microbiol. Immunol. 19, 150-154.


Journal + Issues