Identification of new Trichoderma strains with antagonistic activity against Botrytis cinerea

Open access


The antagonistic activity of 52 isolates of Trichoderma spp. against Botrytis cinerea was tested in in vitro conditions using the dual culture technique. The results revealed that all of the Trichoderma isolates had the ability to inhibit the mycelial growth of grey mould. The percentage reduction in the growth of Botrytis cinerea after six days of incubation at 25ºC varied between 45-78%. The isolates Tr43 and Tr52 showed the highest antagonistic activity (Tr43 - 76%; Tr52 - 78%). Biochemical and molecular identification indicated that both isolates were T. atroviride. The isolates showed differences in the utilisation of 11 to 96 different carbon sources. Additional biochemical tests revealed the ability of Tr43 and Tr52 to produce siderophores, indole-3-acetic acid and chitinases. Neither of the isolates gave positive results regarding phosphate solubilisation on Pikovskaya’s medium.

Abano E.E., Sam-Amoah L.K., 2012. Application of antagonistic microorganisms for the control of postharvest decays in fruits and vegetables. Int. J. Adv. Biol. Res. 2(1): 1-8.

Alexander D.B., Zuberer D.A., 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils 12: 39-45.

Anita S., Ponmurugan P., 2011. In vitro evaluation of Trichoderma atroviride against Phomopsis theae a casual agent of collar canker disease in tea plants. Int. J. Agric. Res. 6(8): 620-631.

Benitez T., Rincón A.M., Limón M.C., Codón A.C., 2004. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7: 249-260.

Brožová J., 2004. Mycoparasitic fungi Trichoderma spp. in plant protection - Review. Plant Protect. Sci. 40: 63-74.

Brunner K., Zeilinger S., Ciliento R., Woo S.L., Lorito M., Kubicek C.P., Mach R.L., 2005. Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic resistance. Appl. Environ. Microbiol. 71: 3959-3965.

Chaur-Tsuen L., Chien-Yih L., 2002. Screening strains of Trichoderma spp. for plant growth enhancement in Taiwan. Plant Pathol. Bul. 11: 215-220.

De Kock P.J., Holz G., 1994. Application of fungicides against postharvest Botrytis cinerea bunch rot of table grapes in the Western Cape. S. Afr. J. Enol. Vitic. 15: 33-40.

Elad Y., Williamson B., Tudzynski P., Delen N., 2007. Botrytis: Biology, Pathology and Control. Springer, The Netherlands.

El-Nagg ar M., Kövics G.J., Sánd or E, Irinyi L., 2008. Mycoparasitism and antagonistic efficiency of Trichoderma reesei against Botrytis spp. Contrib. Bot. 43: 141-147.

Fiume F., Fiume G., 2006. Biological control of Botrytis gray mould on tomato cultivated in greenhouse. Commun Agric. Appl. Biol. Sci. 71(3 Pt B): 897-908.

Freeman S., Minz D., Kolesnik I., Barbul O., Zveibil A., May man M., 2004. Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. Eur. J. Plant Path. 110: 361-370.

Gordon S., Weber R.P., 1951. The colorimetric estimation of IAA. Plant Physiol. 26: 192-195.

Hajiegh rari B., Torabi-Giglou M., Mohamm adi M.R., Davari M., 2008. Biological potential of some Iranian Trichoderma isolates in the control of soil borne plant pathogenic fungi. Afr. J. Biotechnol. 7: 967-972.

Harigh i M.J., Zamani M.R., Motallebi M., 2007. Evaluation of antifungal activity of purified chitinase 42 from Trichoderma atroviride PTCC5220. Biotechnol. 6(1): 28-33.

Howell C.R., 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis. 87: 4-10.

Hoyos-Carvajal L., Orduz S., Bissett J., 2009. Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biol. Control 51: 409-416.

Hsu S.C., Lockwood J.L., 1975. Powdered chitin agar as a selective medium for enumeration of Actinomycetes in water and soil. Appl. Microbiol. 29: 422-426.

Jabn oun-Khiaredd ine H., Daami-Remadi M., Ayed F., El Mahj oub M., 2009. Biological control of tomato Verticillium wilt by using indigenous Trichoderma spp. Afr. J. Plant Sci. Biotech. 3 (Special Issue 1): 26-36.

Joshi B.B., Bhatt R.P., Bahukh and i D., 2010. Antagonistic and plant growth activity of Trichoderma isolates of Western Himalayas. J. Environ. Biol. 31: 921-928.

Karkachi N.E., Gharbi S., Kihal M., Henn i J.E., 2010. Biological control of Fusarium oxysporum f.sp. lycopersici isolated from algerian tomato by Pseudomonas fluorescens, Bacillus cereus, Serratia marcescens and Trichoderma harzianum. Res. J. Agron. 4: 31-34.

Kexiang G., Xiaoguang L., Yonghong L., Tianbo Z., Shuliang W., 2002. Potential of Trichoderma harzianum and T. atroviride to control Botryosphaeria berengeriana f. sp. piricola, the cause of apple ring rot. J. Phytopathol. 150: 271-276.

Lone M.A., Wani M.R., Sheikh S.A., Sahay S., Dar M.S., 2012. Antagonistic potentiality of Trichoderma harzianum against Cladosporium spherospermum, Aspergillus niger and Fusarium oxysporum. J. Biol. Agric. Health. 2: 72-76.

Mahamuni S.V., Wani P.V., Patil A.S., 2012. Isolation of phosphate solubilizing fungi from rhizosphere of sugarcane & sugar beet using TCP & RP solubilization. Asian J. Biochem. Pharm. Res. 2(1): 237-244.

Markoglou A.N., Ziogas B.N., 2002. SBI-fungicides: fungicidal effectiveness and resistance in Botrytis cinerea. Phytopathol. Mediterr. 41: 120-130.

Matroudi S., Zamani M.R., Motallebi M., 2009. Antagonistic effects of three species of Trichoderma sp. on Sclerotinia sclerotiorum, the casual agent of canola stem rot. Egypt. J. Biol. 11: 37-44.

McLean K.L., Braith waite M., Swaminath an J., Stewart A., 2012. Variability in control of onion white rot by Trichoderma atroviride under different disease pressures. Austr. Plant Pathol. 41: 341-346.

Mehrotra R.S., Aggarwal A., 2003. Plant Pathology. Tata McGraw-Hill Publishing Company Limited, New Delhi, India.

Meszka B., Bielenin A., 2009 . Bioproducts in control of strawberry Verticillium wilt. Phytopathol. 52: 21-27.

Mishra B.K., Mishra R.K., Mishra R.C., Tiwa ri A.K., Yadav R.S., Dikshit A., 2011. Biocontrol efficacy of Trichoderma viride isolates against fungal plant pathogens causing disease in Vigna radiata L. Appl. Sci. Res. 3: 361-369.

Morton D.T., Stroube N.H., 1955. Antagonistic and stimulatory effects of microorganism upon Sclerotioum rolfsii. Phytopathol. 45: 419-420.

Pikovskaya R.I., 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiol. 17: 362-370.

Shamm ugaiah V., Balasubramanian N., Gomath inayagam S., Manoharan P.T., Rajend ran A., 2009. Effect of single application of Trichoderma viride and Pseudomonas fluorescens on growth promotion in cotton plants. Afr. J. Agric. Res. 4: 1220-1225.

Siameto E.N., Okoth S., Amugune N.O., Chege N.C., 2010. Antagonism of Trichoderma harzianum isolates on soil borne plant pathogenic fungi from Embu District, Kenya. J. Yeast Fungal Res. 1: 47-54.

Sookchaoy K., Panth achode S., Thipchu J., 2009. Screening of Trichoderma spp. for Phytophthora root and foot rot on Citrus sinensis biocontrol. Intl Conf. on the Role of Universities in Hands-On Education, 23-29 August, Thailand: 356-362 p.

Spiegel Y., Chet I., 1998. Evaluation of Trichoderma spp. as a biocontrol agent against soliborne fungi and plant-parasitic nematodes in Israel. Integ. Pest Manag. Rev. 3: 169-175.

Verma M., Brar S.K., Tyagi R.D., Surump alli R.Y., Valéro J.R., 2007. Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochem. Eng. J. 37: 1-20.

Watanabe T., 2010. Pictorial Atlas of Soil and Seed Fungi. Third Edition. CRC Press, USA.

White T.J., Bruns T.D., Lee S.B., Taylor J.W., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications. M.A. Innis, D.H. Gelfand, J.J. Sninsky and T.J.

White (eds), Academic Press, San Diego: 315-322 p. Williamson B., Tudzynski B., Tudzynski P., Van Kan J.A.L., 2007. Botrytis cinerea: the cause of grey mould disease. Mol. Plant Pathol. 8: 561-580.

Yadav J., Verma J.P., Tiwari K.N., 2011 . Solubilization of tricalcium phosphate by fungus Aspergillus niger at different carbon sources and salinity. Trends Appl. Sci. Res. 6(6): 606-613.

Folia Horticulturae

The Journal of Polish Society for Horticultural Sciences (PSHS)

Journal Information

Web of Science, IMPACT FACTOR 2017: 0.244
Scopus, SCImago Journal Rank (SJR) 2017: 0.129

CiteScore 2017: 0.29

Source Normalized Impact per Paper (SNIP) 2017: 0.432

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 232 232 17
PDF Downloads 79 79 6