Isozyme polymorphism and seed and cone variability of Scots pine (Pinus sylvestris l.) in relation to local environments in Poland

Paweł Przybylski 1 , Katarzyna Masternak 2  and Szymon Jastrzębowski 1
  • 1 Forest Research Institute, Department of Sylviculture and Forest Tree Genetics, Braci Leśnej 3, Sękocin Stary, 05-090, Raszyn, Poland
  • 2 University of Life Sciences in Lublin, Faculty of Agrobioengineering, Institute of Plant Genetics, Breeding and Biotechnology, Akademicka 13, 20-950, Lublin, Poland

Abstract

Evolutionary processes lead to the survival of individuals best adapted to local environment. This gives rise to allele polymorphism and genetic diversity of populations. Isoenzyme proteins, which are the product of gene expression, are an effective tool for tracking these changes. On the other hand, the reproductive potential of a given population can be assessed based on its ability to produce viable and efficiently germinating seeds. The present results combine molecular analyses of isoenzyme proteins with anatomical and morphological studies of Scots pine seeds (Pinus sylvestris L.). The study was conducted in 6 populations that are characteristic of this species occurrence range in the country. The results confirm the correlation between seed weight and embryo size. They also show a population from northeastern Poland had a higher effective number of alleles and seed with lower germinative energy and capacity. There was genetic homogeneity in all except for the population from Woziwoda, which was significantly different based on the Fst test. The genetic characteristics of Scots pine from Woziwoda may be associated with the lower levels of rainfall that occur there during the growing season. The results improve our knowledge of Scots pine variability and contribute to the discussion of the impact of local environment on genetic variability.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Antosiewicz, Z. 1970. Rola i zadania oceny nasion w gospodarstwie leśnym. Las Polski, 44 (11), 9–11.

  • Bergmann, F., Gregorius, H.R., Scholz, F. 1989. Isoenzymes, indicators of environmental impacts on plants or environmentally stable gene markers? In: Genetic Effects of Air Pollutants in Forest Tree Populations (eds. F. Scholz, H.R. Gregorius, D. Rudin). Springer-Verlag 17–25.

  • Bergmann, F., Scholz, F. 1985. Effects of selection pressure by SO2 pollution on genetic structures of Norway spruce (Picea abies). In: Population genetics in forestry. Lecture notes in biomatematics (ed. H.R. Gregorius). Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 267–275.

  • Bergmann, F., Scholz, F. 1989. Selection effects of air pollution in Norway spruce (Picea abies) populations. In: Genetic Effects of Air Pollutants in Forest Tree Populations (eds. F. Scholz, H.R. Gregorius, D. Rudin). Springer-Verlag, 143–162.

  • Blumenröther, M., Bachmann, M., Müller-Starck, G. 2001. Genetic characters and diameter growth of provenances of Scots pine (Pinus sylvestris L.). Silvae Genetica, 50 (5), 212–222.

  • Bodył, M., Załęski, A. 2005. Intensywność obradzania i jakość nasion sosny zwyczajnej (Pinus sylvestris L.) na stałych powierzchniach obserwacyjnych monitoringu lasu w latach 1996–2003. Leśne Prace Badawcze, 2, 57–72.

  • Brus, R. 1996. Vpliv onesnazevanja ozracja na genetsko strukturo bukovih populacji v Sloveniji. Influence of air pollution on genetic structure of beech populations in Slovenia. Zbornik Gozdarstva in Lesarstva, 49, 67–103.

  • Burczyk, J. 1990. Struktura genetyczna plantacji nasiennej sosny zwyczajnej (Pinus sylvestris L.) w Nadleśnictwie Gniewkowo. Arboretum Kórnickie, 35, 91–101.

  • Cherepnin, V.L. 1964. The importance of Pinus sylvestris seed origin, weight and colour in selection. In: Selekciia Drevesnykh Porod v Vostochnoj Sibiri. Izdatelstro Nauka, Moscow, 56–68.

  • Cicek, E., Tilki, F. 2007. Seed size effects on germination, survival and seedling growth of Castanea sativa Mill. Journal of Biological Sciences, 7, 438–441. DOI: 10.3923/jbs.2007.438.441

  • Cieślewicz, A. 2008. Charakterystyka wybranych loci mikrosatelitarnych u sosny zwyczajnej i ich wykorzystanie do identyfikacji szczepów drzew matecznych. Ph. D. thesis, Adam Mickiewicz University Poznań.

  • Conkle, M.T., Hodgskiss, P.D., Nunnaly, L.B., Hunter, S.C. 1982. Starch gel electrophoresis of conifer seeds: a laboratory manual. USDA Forest Service. Pacific Southwest Forest and Range Experimental Station. General Technical Report, PSW-64, 18.

  • Durel, C.E., Bertin, P., Kremer, A. 1996. Relationship between inbreeding depression and inbreeding coefficient in maritime pine (Pinus pinaster). Theoretical and Applied Genetics, 92, 347–356. DOI: 10.1007/BF00223678

  • Eckert, A.J., van Heerwaarden, J., Wegrzyn, J.L., Nelson, C.D., RossIbarra, J., Gonzalez-Martınez, S.C., Neale, D.B. 2010. Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics, 185, 969–982.

  • Food and Agriculture Organization of the United Nations. 2014. Report of the 14th Regular Session of the Commission on Genetic Resources for Food and Agriculture. Available at http://www.fao.org/docrep/meeting/028/mg468e.pdf

  • Furnier, G.R., Adams, W.T. 1986. Geographic patterns of allozyme variation in Jeffrey pine. American Journal of Botany, 73 (7), 1009–1015.

  • Furnier, G.R., Stine, M., Mohn, C.A., Clyde, M.A. 1991. Geographic patterns of variation in allozymes and height growth in white spruce. Canadian Journal of Forest Research, 21, 707–712. DOI: 10.1139/x91-097

  • González-Rodríguez, V., Villar, R., Navarro-Cerrillo, R.M. 2011. Maternal influences on seed mass effect and initial seedling growth in four Quercus species. Acta Oecologica, 37 (1), 1–9. DOI: 10.1016/j. actao.2010.10.006

  • Gömöry, D. 1992. Effect of stand origin on the genetic diversity of Norway spruce [Picea abies Karst.] populations. Forest Ecology and Management, 54, 215–223.

  • Goncharenko, G.G., Silin, A.E., Padutov, V.E. 1994. Allozyme variation in natural populations of Eurasian Pines III. Population structure, diversity, differentiation and gene flow in central and isolated populations of Pinus sylvestris L. in eastern Europe and Siberia. Silvae Genetica, 43, 119–132.

  • Hedrick, P.W., Miller, P. 1992. Conservation genetics: techniques and fundamentals. Ecological Applications, 2, 30–46.

  • Hosius, B. 1994. Auswirkungen von Schwermetall-stress auf die genetischen Strukturen verschiedener Fichtenprovenienzen. Göttingen Research Notes in Forest Genetics, 17, 1–27.

  • Hu, X.S., Li, B. 2001. Linking evolutionary quantitative genetics of the conservation of genetic resources in natural forest populations. Silvae Genetica, 51, 177–183.

  • ISTA. 2013. International Rules for Seed Testing. Intentional Seed Testing Association, Switzerland.

  • Jovanovic, M.L. 1960. Influence de la grosseur des graines du Pin noir (Pinus nigra Arn.) sur la germination et le development des semis pendant la premiere annee de vegetation. Revue Forestiere Francaise, 5, 301–308.

  • Konnert, M. 1993. Untersuchungen zum Einfluss genetischer Faktoren auf die Schädingung der Weiβtanne. Forstwissenschaftliche Centralblatt, 112, 20–26.

  • Kosińska, J., Lewandowski, A., Chałupka, W. 2007. Genetic variability of Scots pine maternal populations and their progenies. Silva Fennica, 41 (1), 5–12.

  • Lewandowski, A., Burczyk, J. 2002. Allozyme variation of Picea abies in Poland. Scandinavian Journal of Forest Research, 17, 487–494.

  • Loveless, M.D., Hamrick, J.L. 1984. Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics, 15, 65–95.

  • Manchenko, G.P. 1994. Handbook of detection of enzymes on electrophoretic gels. CRC Press Inc. Boca Raton, Ann Arbor, London, Tokyo.

  • Masternak, K. 2015. Genetic variability of phenological forms in selected provenances of Norway spruce of IPTNS-IUFRO 1964/68 experiment test in Poland. Austrian Journal of Forest Science, 132 (3), 169–184.

  • Müller-Starck, G., Ziehe, M., Schubert, R. 2005. Genetic diversity parameters associated with viability selection reproductive efficiency and growth in forest tree species. In: Forest diversity and function (eds. M. Scherer-Lorenzen, Ch. Körner, E.D. Schulze). Ecological studies 176. Springer Verlag, Heidelberg, 87–108.

  • Müller-Starck, G. 1989. Genetic implications of environmental stress in adult forest stands of Fagus sylvatica L. In: Genetic Effects of air pollutants in forest tree populations (eds. F. Scholz, H.R. Gregorius, D. Rudin). Springer Verlag, 127–142.

  • Müller-Starck, G. 1993. Auswirkungen von Umweltbelastungen auf genetische Strukturen von Waldbeständen am Beispiel der Buche (Fagus sylvatica L.). Schriften aus der Forstlichen Fakultät der Universität Göttingen und der Niedersächsischen Forstlichen Versuchsanstalt, 112.

  • Nei, M., Roychoundry, A.K. 1974. Sampling variances of heterozygosity and genetic distance. Genetic, 76, 379–390.

  • Novoselceva, A.I. 1968. O sortirovke leśnych semjan. Lesnoe Chozjajstvo, 5, 50–52.

  • Odrzykoski, I., Gottlieb, L. 1984. Duplication of genes coding 6-phosphogluconate dehydrogenase in Clarkia (Onagraceae) and their phylogenetic implications. Systematic Botany, 9 (4), 479–489. DOI: 10.2307/2418797

  • Opracowanie szczegółowych wymagań wynikających z Dyrektywy Rady 1999/105/WE z dnia 22 grudnia 1999 r w odniesieniu do leśnego materiału podstawowego i produkowanego z niego leśnego mate-riału rozmnożeniowego, 2003. Instytut Badawczy Leśnictwa, Zakład Genetyki i Fizjologii Drzew Leśnych.

  • Peakall, R., Smouse, P. 2006. GENEALEX 6: Genetic Analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288–295.

  • Pravdin, L.F. 1969. Scots pine. Variation, intraspecific taxonomy and selection Izd. Nauka, Moskva.

  • Prus-Glowacki, W., Stephan, B.R. 1994. Genetic variation of Pinus sylvestris from Spain in relation to other European populations. Silvae Genetica, 43, 7–14.

  • Prus-Głowacki, W., Stephan, B.R., Bujas, E., Alia, R., Marciniak, A. 2003. Genetic differentiation of autochthonous populations of Pinus sylvestris (Pinaceae) from the Iberian peninsula. Plant Systematics and Evolution, 239 (1/2), 55–66. DOI: 10.1007/s00606-002-0256-3

  • Prus-Głowacki, W., Sukovata, L., Lewandowska-Wosik, A., Nowak-Bzowy, R. 2015. Shikimate dehydrogenase (E.C. 1.1.1. 25 ShDH) alleles as potential markers for flowering phenology in Pinus sylvestris. Dendrobiology, 73, 153–162. DOI: http://dx.doi.org/10.12657/denbio.073.016

  • Prus-Głowacki, W., Urbaniak, L., Zubrowska-Gil, M. 1993. Allozyme differentiation in some European populations of Pinus sylvestris L. Genetica Polonica, 34 (2), 159–176.

  • Reed, D.H., Frankham, R. 2001. How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution, 55 (6), 1095–1103.

  • Reed, D.H., Frankham, R. 2003. Correlation between fitness and genetic diversity. Conservation Biology, 17 (1), 230–237. DOI: 10.1046/j.1523-1739.2003.01236.x

  • Reich, P.B., Oleksyn, J., Tjoelker, M.G. 1994. Seed mass effects on germination and growth of diverse European Scots pine populations. Canadian Journal of Forest Research, 24, 306–320. DOI: 10.1139/x94-044

  • Quesada, T. et al. 2010. Association mapping of quantitative disease resistance in a natural population of loblolly pine (Pinus taeda L.). Genetics, 186, 677–686.

  • Scaltsoyiannes A. et al. 2009. Allozyme variation of European Black (Pinus nigra Arnold) and Scots pine (Pinus sylvestris L.) populations and implications on their evolution: A comparative study. Journal of Biological Research-Thessaloniki, 11, 95–106.

  • Seifert, T., Müller-Starck, G. 2009. Impact of fructification on biomass production and correlated genetic effects in Norway spruce (Picea abies [L.] Karst.). European Journal of Forest Research, 128, 155–169. DOI: 10.1007/s10342-008-0219-5

  • Singh, O., Sofi, A.H. 2011. Clone variation of seed traits, germination and seedling growth in Dalbergia sissoo Roxb. clonal seed orchard. Annals of Forest Research, 54 (2), 139–149.

  • Starcke, R., Ziehe, M., Müller-Starck, G. 1996. Viability selection in juvenile populations of European beech (Fagus sylvatica L.). Forest Genetics, 3, 217–225.

  • Staszkiewicz, J. 1993. Zmienność morfologiczna szpilek, szyszek I nasion. In: Biologia sosny zwyczajnej (eds. S. Białobok, A. Boratyński, W. Bugała). Wydawnictwo Sorus, Poznań – Kórnik, 33–42.

  • Stat Soft Inc. 2010. STATISTICA (data analysis software system) version 9.0. Available at www.stat-soft.com

  • Sztuba-Solińska, J. 2005. Systemy markerów molekularnych i ich zastosowanie w hodowli roślin. Kosmos, 54 (2/3), 227–239.

  • Tyszkiewicz, S. 1949. Nasiennictwo leśne. IBL, Warszawa.

  • Vojčal, P.J. 1961. Opytne kultury sosny iz sortirovannych semjan. Lesnoj Žurnal, 4 (6), 27–30.

  • Wang, T.L. 1996. Allozyme variation in populations, full-sib families and selfed lines in Betula pendula Roth. Theoretical and Applied Genetics, 92, 1052–1058. DOI: 10.1007/BF00224048

  • Wang, D., Wei, Z.G., Yang, C.P., Liu, G.J. 2008. Analysis and identification of SCAR molecular markers associated with birch fiber length trait. Journal of Forest Research, 19, 288–292.

  • Whitlock, M.C. 2002. Selection, load, and inbreeding depression in a large metapopulation. Genetics, 160, 1191–1202.

  • Wright, J.W., Bull, W.I. 1963. Geographic variation in Scots pine. Slivae Genetica, 12 (12), 1–40.

  • Wright, S. 1969. Evolution and the genetics of populations, vol. 2: The theory of gene Frequencies. University of Chicago Press, Chicago.

  • Wright, S. 1987. Evolution and the genetics of populations. Variability within and among natural populations. University of Chicago Press, Chicago.

  • Wrześniewski, W. 1982. Physiology of Scots pine seedlings grown from seed of different weight. II. Differentiation of seedlings growth during the first growing season. Acta Physiologiae Plantarum, 4 (1/2), 139–151.

  • Xia, D.A., Wei, Z.G., Yang, C.P., Liu, G.J. 2008. Analysis of ISSR and SCAR Markers associated with birch fiber length trait. Journal of Northeast Forestry University, 39, 1–4.

  • Załęski, A. 1995. Nasiennictwo leśnych drzew i krzewów iglastych. Wydawnictwo Świat, Warszawa.

  • Załęski, A., Gozdalik, M. 1994. Standardowe wymiary zarodka i bielma nasion sosny zwyczajnej w Polsce i ich znaczenie dla oceny żywotności nasion. Prace IBL, 780, 48–59.

  • Ziehe, M., Hattemer, H., Müller-Starck, G. 1999. Genetic structures as indicators for adaptation and adapational potentials. In: Forest genetics and sustainability (ed. C. Mátyás). Kluwer, Dordrecht, 75–89.

OPEN ACCESS

Journal + Issues

Search