Diversity of soil bacteria complexes associated with summer truffle (Tuber aestivum)

Marta Siebyła 1  and Dorota Hilszczańska 2
  • 1 Forest Research Institute, Department of Forest Protection, Braci Leśnej 3, Sękocin Stary, 05-090, Raszyn, Poland
  • 2 Forest Research Institute, Department of Forest Ecology, Braci Leśnej 3, Sękocin Stary, Raszyn, Poland

Abstract

This paper describes the quantitative and qualitative composition of bacteria isolated from soil in the selected sites in the Nida Basin, in places where mycorrhizae and ascocarps of summer truffle (Tuber aestivum) were found, and in a control soil (without truffle). A classic growth culture method was used with Sanger DNA sequencing to obtain quantitative and qualitative measures of bacterial cultures. The obtained results showed differences in bacteriome composition between the case samples, in which summer truffle fructification was observed, and the control samples. Seven classes of bacteria were identified: Actinobacteria, Bacilli, Deinococci, Flavobacteria, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. The most numerous bacterial genera were Pseudomonas (class Gammaproteobacteria) – 33%, Streptomyces (class Actinobacteria) – 29% and Bacillus (class Bacilli) – 15%. This research broadens the understanding of individual groups of bacteria accompanying truffles and their potential impact on the formation of summer truffle ascocarps.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Baciarelli-Falini, L., Rubini, A., Riccioni, C., Paolocci, F. 2006. Morphological and molecular analyses of ectomycorrhizal diversity in a man-made T. melanosporum plantation: description of novel truffle-like morphotypes. Mycorrhiza, 16, 475–484.

  • Baldrian, P. et al. 2012. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. The ISME Journal, 6, 248–258.

  • Barbieri, E. et al. 2005. New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungus Tuber borchii. FEMS Microbiology Letters, 247, 23–35.

  • Barbieri, E. et al. 2007. Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation. Environmental Microbiology, 9, 2234–2246.

  • Barbieri, E. et al. 2010. New evidence for nitrogen fixation within the Italian white truffle Tuber magna-tum. Fungal Biology, 114, 936–942.

  • Bulletins of the State Hydrological and Meteorological Service of the Institute of Meteorology and Water Management (IMGW-PIB).

  • Błaszczyk, M.K. 2010. Mikrobiologia środowisk. Wydawnictwo PWN, Warszawa.

  • Citterio, B. et al. 1995. Isolation of bacteria from sporocarps of Tuber magnatum Pico, Tuber borchii Vitt. and Tuber maculatum Vitt. In: Biotechnology of ectomycorrhizae, (eds. V. Stocchi, P. Bonfante, M. Nuti). Plenum Press, New York, 241–248.

  • Deveau, A. et al. 2016. Temporal changes of bacterial communities in the Tuber melanosporum ectomycorrhizosphere during ascocarp development. Mycorrhiza, 26, 389–399.

  • Forest Database Bank. Available at http://www.bdl.lasy.gov.pl/

  • Frąc, M., Jezierska-Tys, S. 2010. Różnorodność mikroorganizmów środowiska glebowego. Postępy Mikrobiologii, 49, 47–58.

  • Frey-Klett, P., Garbaye, J.A., Tarkka, M. 2007. The mycorrhiza helper bacteria revisited. New Phytologist, 176, 22–36.

  • Garbaye, J., Churin, J.L., Duponnois, R. 1992. Effects of substrate sterilization, fungicide treatment, and mycorrhization helper bacteria on ectomycorrhizal formation of pedunculate oak (Quercus robur) inoculated with Laccaria laccata in two peat bare-root nurseries. Biology and Fertility of Soils, 13, 55–57.

  • Gotkowska-Płachta, A., Filipkowska, Z., Korzeniewska, E., Janczukowicz, W. 2008. Zanieczyszczenia mikrobiologiczne powietrza atmosferycznego na terenie iw otoczeniu oczyszczalni ścieków z systemem stawów napowietrznych. Woda-Środowisko-Obszary Wiejskie, 8, 83–98.

  • Górska, E., Russel, S. 2004. Występowanie tlenowych, przetrwalnikujących bakterii celulolitycznych w glebach leśnych. Acta Agraria et Silvestria. Series Agraria, 42, 177–186.

  • Gryndler, M., Hršelová, H. 2012. Isolation of bacteria from ectomycorrhizae of Tuber aestivum Vittad. Acta Mycologica, 47, 155–160.

  • Gryndler, M. et al. 2013. A quest for indigenous truffle helper prokaryotes. Environmental Microbiology Reports, 5, 346–352.

  • Hilszczańska, D., Rosa-Gruszecka, A., Sikora, K., Szmidla, H. 2013. First report of Tuber macrosporum occurrence in Poland. Scientific Research and Essays, 8, 1096–1099.

  • Hilszczańska, D. 2016. Polskie trufle skarb odzyskany. Centrum Informacyjne Lasów Państwowych, Warsaw, Poland.

  • Hilszczańska, D., Rosa-Gruszecka, A., Gawryś, R., Horak, J. 2019a. Effect of soil properties and vegetation characteristics in determining the frequency of Burgundy truffle fruiting bodies in Southern Poland. Écoscience, 26, 113–122.

  • Hilszczańska, D., Szmidla, H., Sikora, K., Rosa-Gruszecka, A. 2019b. Soil Properties Conducive to the Formation of Tuber aestivum Vitt. Fruiting Bodies. Polish Journal of Environmental Studies, 28, 1713–1718.

  • Ipsilantis, I., Sylvia, D.M. 2007. Interactions of assemblages of mycorrhizal fungi with two Florida wet-land plants. Applied Soil Ecology, 35, 261–271.

  • Janssen, P.H., Yates, P.S., Grinton, B.E., Taylor, P.M., Sait, M. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Applied and Environmental Microbiology, 68, 2391–2396.

  • Kołwzan, B., Adamiak, W., Grabas, K., Pawełczyk, A. 2005. Podstawy mikrobiologii w ochronie środowiska. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, Poland.

  • Kozdrój, J. 2013. Metagenom – źródło nowej informacji o mikroorganizmach glebowych. Postępy Mikrobiologii, 52, 185–200.

  • Krivtsov, V., Bellinger, E.G., Sigee, D. 2005. Elemental composition of Microcystis aeruginosa under conditions of lake nutrient depletion. Aquatic Ecology, 39, 123–134.

  • Lane, D.J. 1991. 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics (eds. E. Stackebrandt, M. Goodfellow). John Wiley and Sons, 115–175.

  • Lehr, N.A., Schrey, S.D., Hampp, R., Tarkka, M.T. 2008. Root inoculation with a forest soil streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce. New Phytologist, 177, 965–976.

  • Maier, A., Riedlinger, J., Fiedler, H.P., Hampp, R. 2004. Actinomycetales bacteria from a spruce stand: characterization and effects on growth of root symbiotic, and plant parasitic soil fungi in dual culture. Mycological Progress, 3, 129–136.

  • Mamoun, M., Olivier, J.M. 1992. Effect of soil Pseudomonads on colonization of hazel roots by the ecto-mycorrhizal species Tuber melanosporum and its competitors. Plant and Soil, 139, 265–273.

  • Mello, A. et al. 2013. Truffle brûlés have an impact on the diversity of soil bacterial communities. PLoS One, 8 (4), 61945.

  • Olivier, J., Savignac, J., Sourzat, P. 2012. Truffe et Trufficulture. Fanlac, Périgueux, France.

  • Ncbi.nlm.nih.gov. Available at http://www.ncbi.nlm.nih.gov/ (access on 15 November 2017).

  • PN-ISO 10390:1997. 1997. Jakość gleby. Oznaczanie pH. Polski Komitet Normalizacyjny, Warszawa.

  • PN-ISO 10694:2002. 2002. Jakość gleby – Oznaczanie zawartości węgla organicznego i całkowitej zawartości węgla po suchym spalaniu (analiza elementarna). Polski Komitet Normalizacyjny, Warszawa.

  • PN-ISO 13878:2002. 2002. Jakość gleby – Oznaczanie zawartości azotu całkowitego po suchym spalaniu (‘analiza elementarna’). Polski Komitet Normalizacyjny, Warszawa.

  • PN-EN ISO 11260:2011. 2011. Jakość gleby – Oznaczanie efektywnej pojemności wymiennej kationowej i stopnia wysycenia zasadami z zastosowaniem roztworu chlorku baru. Polski Komitet Normalizacyjny, Warszawa.

  • Pociejowska, M., Natywa, M., Gałązka, A. 2014. Stymulacja wzrostu roślin przez bakterie PGPR. Kosmos, 4, 603–610.

  • Rosa-Gruszecka, A., Hilszczańska, D., Szmidla, H. 2014. Warunki środowiskowe sprzyjające występowaniu trufli (Tuber spp.) na historycznych stanowiskach w Polsce. Leśne Prace Badawcze, 75, 5–11.

  • Sait, M., Hugenholtz, P., Janssen, P.H. 2002. Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environmental Micro-biology, 4, 654–666. DOI: https://doi.org/10.1046/j.1462-2920.2002.00352.x

  • Saltarelli, R., Ceccaroli, P., Cesari, P., Barbieri, E., Stocchi, V. 2008. Effect of storage on biochemical and microbiological parameters of edible truffle species. Food Chemistry, 109, 8–16.

  • Sbrana, C., Agnolucci, M., Bedini, S., Lepera, A., Toffanin, A., Giovannetti, M., Nuti, M.P. 2002. Diversity of culturable bacterial populations associated to Tuber borchii ectomycorrhizas and their activity on T. borchii mycelial growth. FEMS Microbiology Letters, 211, 195–201.

  • Schrey, S.D., Salo, V., Raudaskoski, M., Hampp, R., Nehls, U., Tarkka, M.T. 2007. Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric). Current Genetics, 52, 77–85.

  • Siebyła, M., Hilszczańska, D. 2017. Różnorodność gatunkowa bakterii powiązanych z grzybami z rodzaju Tuber (trufla). Postępy Mikrobiologii, 56, 24–28.

  • Solon, J. et al. 2018. Mezoregiony fizyczno-geograficzne Polski: weryfikacja i dostosowanie granic na podstawie współczesnych danych przestrzennych. Geographia Polonica, 91 (2).

  • Torsvik, V., Ovreas, L. 2002. Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology, 5, 240–245.

  • Zwoliński, J. 2005. Oznaczanie udziału grzybów i bakterii w biomasie drobnoustrojów gleb leśnych. Leśne Prace Badawcze, 4, 7–18.

  • Vahdatzadeh, M., Deveau, A., Splivallo, R. 2015. The role of the microbiome of truffles in aroma formation: a meta-analysis approach. Applied and Environmental Microbiology, 81, 6946–6952.

OPEN ACCESS

Journal + Issues

Search