Pathogenicity of Phytophthora isolates originating from several woody hosts in Bulgaria and Poland

Open access


Our aim was to examine the virulence of eight Phytophthora isolates belonging to three species (Phytophthora cryptogea, Phytophthora plurivora and Phytophthora quercina) obtained from diverse European ecosystems (in Bulgaria, Poland and Germany) towards three forest tree hosts – English oak (Quercus robur L.), Turkey oak (Quercus cerris L.) and European beech (Fagus sylvatica L.).

All plants grown from seeds in a greenhouse conditions were artificially inoculated under the stem bark with Phytophthora cultures. The tested isolates turned to be more aggressive to Turkey oaks than to English oak trees. In case of European beech, the isolates of P. cryptogea and P. plurivora exposed various virulence. The potential hazard of the introduced foreign isolates for the oak and beech forests in Poland and Bulgaria is discussed. Amongst the tested isolates, P. quercina P290 from German highly infected Bulgarian Turkey oaks; therefore, its negative potential impact on Bulgarian oak forests could be considered as high (if unintentionally introduced). Also, two Bulgarian isolates belonging to P. cryptogea and P. plurivora are risky for Polish beech forests, if exposed to the pathogen. The observed pathogenicity of the tested Phytophthora species proved their potential as important contributors to decline of valuable forest ecosystems dominated by oaks (Q. robur and Q. cerris) or beech (F. sylvatica), in both Poland and Bulgaria. We found that investigated Phytophthora pathogens could develop in the living plant stem tissues without causing any disease symptoms, which is another demonstration that phytosanitary control by simple observation of plant material is not effective.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Angay O. Fleischmann F. Recht S. Herrmann S. Matyssek R. Osswald W. Buscot F. Grams T.E.E. 2014. Sweets for the foe–effects of nonstructural carbohydrates on the susceptibility of Quercus robur against Phytophthora quercina. New Phytologist 203 (4) 1282–1290.

  • Basiewicz M. Jankiewicz D. Woodward S. Soulioti N. Oszako T. 2007. A review of historical data on selected alien invasive pathogens and pests in Europe. In: Alien invasive species and international trade (eds.: H. Evans T. Oszako) Forest Research Institute Warsaw Poland 64–71.

  • Brasier C.M. 1999. Phytophthora pathogens of trees: their rising profile in Europe. Information Note 30 1–6.$FILE/fcin30.pdf. Accessed 10 May 2016.

  • Callaghan S. Guest D. 2015. Globalisation the founder effect hybrid Phytophthora species and rapid evolution: new headaches for biosecurity. Australasian Plant Pathology 44 (3) 255–262.

  • Cooke D.E.L. Jung T. Williams N.A. Schubert R. Osswald W. Duncan J.M. 2005. Genetic diversity of European populations of the oak fine root pathogen Phytophthora quercina. Forest Pathology 35 (1) 57–70.

  • Fleischmann F. Koehl J. Portz R. Beltrame A.B. Osswald W. 2005. Physiological change of Fagus sylvatica seedlings infected with Phytophthora citricola and the contribution of its elicitin ‘‘Citricolin’’ to pathogenesis. Plant Biology 7 (6) 650–658.

  • Garbelotto M. Pautasso M. 2012. Impacts of exotic forest pathogens on Mediterranean ecosystems: four case studies. European Journal of Plant Pathology 133 (1) 101–116.

  • Hansen E.M. Reeser P.W. Sutton W. 2012. Phytophthora beyond agriculture. Annual Review of Phytopathology 50 359–378.

  • Ilieva E. Arulappan F.X. Pieters R. 1995. Phytophthora root and crown rot of raspberry in Bulgaria. European Journal of Plant Pathology 101 (6) 623–626.

  • Jankowiak R. Stępniewska H. Bilański P. Kolařík M. 2014. Occurrence of Phytophthora plurivora and other Phytophthora species in oak forests of southern Poland and their association with site conditions and the health status of trees. Folia Microbiologica 59 (6) 531–542.

  • Jönsson U. 2006. A conceptual model for the development of Phytophthora disease in Quercus robur. New Phytologist 171 (1) 55–68.

  • Jönsson U. Jung T. Rosengren U. Nihlgård B. Sonesson K. 2003. Pathogenicity of Swedish isolates of Phytophthora quercina to Quercus robur in two different soils. New Phytologist 158 (2) 355–364.

  • Jung T. 2009. Beech decline in Central Europe driven by the interaction between Phytophthora infections and climatic extremes. Forest Pathology 39 (2) 73–94.

  • Jung T. Nechwatal J. 2008. Phytophthora gallica sp.nov. a new species from rhizosphere soil of declining oak and reed stands in France and Germany. Mycological Research 112 (10) 1195–1205.

  • Jung T. Cooke D.E.L. Blaschke H. Duncan J.M. Osswald W.1999. Phytophthora quercina sp. nov. causing root rot of European oaks. Mycological Research 103 (7) 785–798.

  • Jung T. Blaschke H. Osswald W. 2000. Involvement of soilborne Phytophthora species in Central European oak decline and the effect of site factors on the disease. Plant Pathology 49 (6) 706–718.

  • Jung T. Hansen E.M. Winton L. Osswald W. Delatour C. 2002. Three new species of Phytophthora from European oak forests. Mycological Research 106 (4) 397–411.

  • Jung T. Orlikowski L. Henricot B. Abad-Campos P. Aday A.G. Aguín Casal O. Bakonyi J. Cacciola S.O. Cech T. Chavarriaga D. Corcobado T. Cravador A. Decourcelle T. Denton G. Diamandis S. Doğmuş-Lehtijärvi H.T. Franceschini A. Ginetti B. Glavendekić M. Hantula J. Hartmann G. Herrero M. Ivic D. Horta Jung M. Lilja A. Keca N. Kramarets V. Lyubenova A. Machado H. Magnano di San Lio G. Mansilla Vázquez P.J. Marçais B. Matsiakh I. Milenkovic I. Moricca S. Nagy Z.Á. Nechwatal J. Olsson C. Oszako T. Pane A. Paplomatas E.J. Pintos Varela C. Prospero S. Rial Martínez C. Rigling D. Robin C. Rytkönen A. Sánchez M.E. Sanz Ros A.V. Scanu B. Schlenzig A. Schumacher J. Slavov S. Solla A. Sousa E. Stenlid J. Talgø V. Tomic Z. Tsopelas P. Vannini A. Vettraino A.M. Wenneker M. Woodward S. Peréz-Sierra A. 2015. Widespread Phytophthora infestations in European nurseries put forest seminatural and horticultural ecosystems at high risk of Phytophthora diseases. Forest Pathology 46 (2) 134–163.

  • Lyubenova A. Kostov K. Tsvetkov I. Slavov S. 2016. Pathogens from the genus Phytophthora associated with fruit and forest species in Bulgaria (in Bulgarian with English summary). Forest Science Sofia 51 (1) 79–96.

  • Nakova M. 2010. Phytophthora root and crown rot on apples in Bulgaria. Pesticidi i fitomedicina 25 (1) 43–50.

  • Orlikowski L.B. Gabarkiewicz R. Skrzypczak C. 1995. Phytophthora species in Polish ornamental nurseries. I. Isolation and identification of Phytophthora species. Phytopathologia Polonica 21 73–79.

  • Orlikowski L.B. Duda D. Szkuta G. 2004. Phytophthora citricola on European beech and silver fir in Polish forest nurseries. Journal of Plant Protection Research 44 (1) 57–64.

  • Orlikowski L.B. Ptaszek M. Rodziewicz A. Nechwatal J. Thinggaard K. Jung T. 2011. Phytophthora root and collar rot of mature Fraxinus excelsior in forest stands in Poland and Denmark. Forest Pathology 41 (6) 510–519.

  • Oszako T. 1997. Oak decline in European forests. Bordeaux First EUFORGEN Meeting on Social Broad-leaves (compil.: Turok J. Kremer A. de Vries S.) 23–25 October 1997 IPGRI Bordeaux France 145–151.

  • Oszako T. Orlikowski L.B. Trzewik A. 2007. Menace to Polish forest nurseries by Phytophthora species. Progress in Plant Protection 47 (2) 224–234.

  • Panov P. Bulgariev I. 1982. Problems of the common chestnut in Bulgaria. Ministry of Forests and Forest Industry (in Bulgarian) 18–22.

  • Santini A. Ghelardini L. De Pace C. Desprez-Loustau M.L. Capretti P. Chandelier A. Cech T. Chira D. Diamandis S. Gaitniekis T. Hantula J. Holdenrieder O. Jankovsky L. Jung T. Jurc D. Kirisits T. Kunca A. Lygis V. Malecka M. Marcais B. Schmitz S. Schumacher J. Solheim H. Solla A. Szabo I. Tsopelas P. Vannini A. Vettraino A.M. Webber J. Woodward S. Stenlid J. 2013. Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytologist 197 (1) 238–250.

  • Schlink K. 2010. Down-regulation of defense genes and resource allocation into infected roots as factors for compatibility between Fagus sylvatica and Phytophthora citricola. Functional and Integrative Genomics 10 (2) 253–264.

  • Schoebel C.N. Stewart J. Gruenwald N.J. Rigling D. Prospero S. 2014. Population history and pathways of spread of the plant pathogen Phytophthora plurivora. PLoS One 9 (1) e85368. DOI: 10.1371/journal.pone.0085368.g001

  • Stefanov D. 1953. Oak decline in Bulgaria and actions to prevent it (in Bulgarian). Izvestiya na Biologitcheskiya Institut pri BAN.

  • Thomas F.M. 2008. Recent advances in cause-effect research on oak decline in Europe. CAB Reviews: Perspectives in Agriculture Veterinary Science Nutrition and Natural Resources 3 (037) 1–12.

  • Trzewik A. Orlikowski L.B. Oszako T. Nowakowska J.A. Orlikowska T. 2015. The characterization of Phytophthora isolates obtained from diseased Alnus glutinosa in Poland. Baltic Forestry 21 (1) 44–50.

  • Weiland J.E. Nelson A.H. Hudler G.W. 2010. Aggressiveness of Phytophthora cactorumP. citricola I and P. plurivora from European beech. Plant Disease 94 (8) 1009–1014.

  • Werres S. 1995. Influence of the Phytophthora isolate and the seed source on the development of beech (Fagus sylvatica) seedling blight. European Journal of Plant Pathology 25 (6/7) 381–390.

Journal information
Impact Factor

CiteScore 2018: 0.67

SCImago Journal Rank (SJR) 2018: 0.312
Source Normalized Impact per Paper (SNIP) 2018: 0.569

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 232 92 1
PDF Downloads 151 70 0