Forest stands volume estimation by using Finnish Multi-Source National Forest Inventory in Stołowe Mountains National Park

Open access

Abstract

The purpose of the present study was to convey to the reader the method and application of the Finnish Multi-Source National Forest Inventory (MS-NFI) that was devised in the Finnish Forest Research Institute. The study area concerned is Stołowe Mountains National Park, which is located in the south-western Poland, near the border with the Czech Republic. To accomplish the above mentioned aim, the following data have been applied: timber volume derived from field sample plots, satellite image, digital map data and digital elevation model. The Pearson correlation coefficient between independent and dependent variables has been verified. Furthermore, the non-parametric k-nearest neighbours (k-NN) technique and genetic algorithm have been used in order to estimate forest stands biomass at the pixel level. The error estimates have been obtained by leave-one-out cross-validation method. The main computed forest stands features were total and mean timber volume as well as maximum and minimum biomass occurring in the examined area. In the final step, timber volume map of the growing stock has been created.

Borusiewicz B. 2009. Operat ochrony ekosystemów leśnych Parku Narodowego Gór Stołowych. Taksus SI, Warszawa–Gorzów Wielkopolski.

Franco-Lopez H., Alan R.E., Bauer M.E. 2001. Estimation and mapping of forest stand density, volume, and cover type using the k-Nearest Neighbors method. Remote Sensing of Environment, 77, 251–274.

Halme M., Tomppo E. 2001. Improving the accuracy of multi-source forest inventory estimates to reducing plot location error – a multi-criteria approach. Remote Sensing of Environment, 78 (3), 321–327.

Katila M., Heikkinen J., Tomppo E. 2000. Calibration of small-area estimates for map errors in multi-source forest inventory. Canadian Journal of Forest Research, 30, 1329–1339.

Katila M., Tomppo E. 2001. Selecting estimation parameters for the Finnish multisource National Forest Inventory. Remote Sensing of Environment, 76 (1), 16–32.

Katila M., Tomppo E. 2002. Stratification by ancillary data in multisource forest inventories employing k-nearest-neighbor estimation. Canadian Journal of Forest Research, 32 (9), 1548–1561.

Koukal T., Suppon F., Schneider W. 2005. The impact of relative radiometric calibration on the accuracy of k-NN predictions of forest attributes. ForestSat Report, 8, 17–21.

Maselli F., Chirici G., Bottati L., Corona P., Marchetti M. 2005. Estimation of Mediterranean forest attributes by the application of k-NN procedures to multitemporal Landsat ETM+ images. International Journal of Remote Sensing, 26, 3781–3796.

McRoberts E., Nelson M.D., Wendt D.G. 2002. Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique. Remote Sensing of Environment, 82, 457–468.

Miścicki S. 2000. Kombinowana dwufazowa inwentaryzacja lasów nizinnych z wykorzystaniem zdjęć lotniczych i stałych kontrolnych powierzchni próbnych. Fundacja „Rozwój SGGW”, Warszawa.

Miścicki S. 2009. Pomiar zapasu grubizny z wykorzystaniem zdjęć lotniczych. Sylwan, 153 (6), 373–385.

Miścicki S., Będkowski K., Stereńczak K., Zasada M. 2012. Opracowanie metody pomiaru zasobów leśnych z wykorzystaniem lotniczego skaningu laserowego na przykładzie terenu górskiego objętego ochroną. Projekt badawczy finansowany przez Ministerstwo Nauki i Szkolnictwa Wyższego N N309 111937.

Moeur M., Stage A.R. 1995. Most similar neighbor: an improved sampling inference procedure for natural resource planning. Forest Science, 41, 337–359.

Nilsson M. 1997. Estimation of forest variables using satellite image data and airborne lidar. PhD thesis, Swedish University of Agricultural Sciences, The Department of Forest Resource Management and Geomatics, Acta Universitatis Agriculturae Sueciae, Silvestria, 17.

Pachana P. 2015. Forest stands volume estimation by using Finnish Multi-Source National Forest Inventory. Master thesis, Eberswalde University for Sustainable Development, Faculty of Forest and Environment, Warsaw University of Life Sciences, Faculty of Forestry, 47–64.

Pakkala T., Hanski I., Tomppo E. 2002. Disturbance dynamics in boreal forest: Defining the ecological basis of restoration and management of biodiversity. Silva Fennica, 36 (1), 279–288.

Reese H., Nilsson M., Sandstrom P., Olsson H. 2002. Applications using estimates of forest parameters derived from satellite and forest inventory data. Computers and Electronics in Agriculture, 37 (1), 37–55.

Tokala T., Pitkänen J., Partinen S., Muinonen E. 1996. Point accuracy of a non-parametric method in estimation of forest characteristics with different satellite materials. International Journal of Remote Sensing, 17, 2333–2351.

Tomppo E. 1988. Standwise forest variate estimation by means of satellite images. University of Helsinki, Department of Forest Mensuration and Management, Research Notes 21, 103–111.

Tomppo E. 1990. Satellite image-based National Forest Inventory of Finland. The Photogrammetric Journal of Finland, 12 (1), 115–120.

Tomppo E. 1996. Multi-source National Forest Inventory of Finland – new thrusts in forest inventory. Proceedings of the IUFRO XX World Congress, 6–12 August 1995, Tampere, Finland, Volume 1, 27–41.

Tomppo E., Korhonen K.T., Heikkinen J., Yli-Kojola H. 2001. Multi-source inventory of the forests of the Hebei Forestry Bureau, Heilongjiang, China. Silva Fennica, 35 (3), 309–328.

Trotter C.M., Dymond J.R., Goulding C.J. 1997. Estimation of timber volume in a coniferous plantation forest using Landsat TM. International Journal of Remote Sensing, 18, 2209–2223.

Wang G., Gertner G., Xiao X., Wente S., Anderson A. B. 2001. Appropriate plot size and spatial resolution for mapping multiple vegetation types. Photogrammetric Engineering and Remote Sensing, 67 (5), 575–584.

Folia Forestalia Polonica

Seria A - Forestry; The Journal of Forest Research Institute

Journal Information


CiteScore 2018: 0.67

SCImago Journal Rank (SJR) 2018: 0.312
Source Normalized Impact per Paper (SNIP) 2018: 0.569

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 201 121 13
PDF Downloads 140 98 16