Open Access

Laboratory determination of potential interception of young deciduous trees during low-intense precipitation


Cite

The research issue focuses on potential interception, which is the maximum amount of water that can be stored on plant surface. Tests under controlled conditions remain the best way to enhance knowledge on interception determinants in forest communities. Such tests can provide data for identification of mathematical models based on ecological criteria.

The study presented in this paper concerned tree interception under simulated rain in a range from 2 to 11 mm/h. To perform the experiment a set of sprinklers was designed and built. The study included two deciduous species: beech (Fagus sylvatica L.) and oak (Quercus robur L.).

Descriptive characteristic and nonlinear estimation were suggested for the obtained data. Interdependence of potential interception, the intensity of rain and the size of raindrops were described using exponential equation.

The intensity and drop size of simulated rainfall significantly influence the obtained values of potential interception. Data analysis shows a decrease of interception value with an increase of intensity of simulated rainfall for both analysed species. Every run of the experiment that differed in the intensity and size of raindrops reached an individual level of potential interception and time needed to realize it.

The formation of ability of plants to intercept water depends both on the dynamics and the time of spraying.

eISSN:
2199-5907
ISSN:
0071-6677
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Plant Science, Medicine, Veterinary Medicine