The progress of science from a computational point of view: the drive towards ever higher solvability

Witold Marciszewski

Abstract

This essay’s content is rendered by the titles of the successive sections. 1. Effective solvability versus intuitive solvability. — 2. Decidability, i.e. effective solvability, in predicate logic. The speedup phenomenon — 3. Contributions of the second-order logic to the problems of solvability — 4. The infinite progress of science in the light of Turing’s idea of the oracle. The term “oracle” is a technical counterpart of the notion of mathematical intuition.

A more detailed summary can be obtained through juxtaposing the textboxes labelled with letters A...F. Conclusion: in the progress of science an essential role is played by the feedback between intellectual intuitions (intuitive solvability) and algorithmic procedures (effective solvability).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Benzmüller Ch., Kerber M., A Challenge for Mechanized Deduction (to find the full text in Web, ask Google for the title and select the relevant PDF), 2001.

  • [2] Benzmueller Ch., Brown Ch., The Curious Inference of Boolos in Mizar and OMEGA, in: Studies in Logic, Grammar and Rhetoric (http://logika.uwb.edu.pl/studies/index.php?page=search&vol=23) 23, 2007.

  • [3] Boolos G., A Curious Inference?, Journal of Philosophical Logic, 16, 1987, 1-12.

  • [4] Buss S.R., On Godel’s Theorems on Lengths of Proofs I: Number of Lines and Speedup for Arithmetics, J. Symbolic Logic, 59, 3, 1994, 737-756,.

  • [5] Fischer M.J., Rabin M.O., Super-Exponential Complexity of Presburger Arithmetic, Proceedings of the SIAM-AMS Symposium in Applied Mathematics, 7, 1974, 27-41.

  • [6] Fraenkel A.A., Abstract Set Theory, North Holland, 1976.

  • [7] Gödel K., Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, Monatshefte für Mathematik und Physik, 38, 1931, 173-198.

  • [8] Gödel K., Über die Lange von Beweisen, Ergeb. Math. Kolloquiums, 7, 1936, 23-24.

  • [9] Gödel K., Kurt Gödel Collected Works, vol. 1. Oxford Univ. Press, Oxford, 1986.

  • [10] Hartmanis J., Stearns R., On the computational complexity of algorithms, Transactions of the AMS, 117, 1965, 285-306.

  • [11] Hilbert D., Ackermann W., Grundzüge der theoretischen Logik, Springer, 1928.

  • [12] Hilbert D., Naturerkennen und Logik, Naturwissenschaften, Heft 47/48/49, 28.II.1930, 959-963.

  • [13] Hilbert D., Bernays P., Grundlagen der Mathematik, Springer, (vol. 1) 1934, (vol. 2) 1939.

  • [14] Kneale W., Kneale M., The Development of Logic, Clarendon Press, 1962.

  • [15] Kuhn T., The Structure of Scientific Revolutions, University of Chicago Press, 1962, rev. ed. 1970.

  • [16] Marciszewski W. (ed.), Dictionary of Logic as Applied in the Study of Language. Concepts, Methods, Theories, Nijhoff, 1981.

  • [17] Marciszewski W., Murawski R., Mechanization of Reasoning in a Historical Perspective, Rodopi, 1995.

  • [18] Marciszewski W., Hypercomputational vs. computational complexity. A challenge for methodology of the social sciences, in: Free Market and Computational Complexity. Essays in Commemoration of Friedrich Hayek (1899-1992) of the series Studies in Logic, Grammar and Rhetoric (http://logika.uwb.edu.pl/studies/index.php?page=search&vol=18), 5(18), 2002.

  • [19] Marciszewski W., The Gödelian Speed-up and Other Strategies to Address Decidability and Tractability, Studies in Logic, Grammar and Rhetoric, 9(22), 2006.

  • [20] Newman M. H. A., Alan Mathison Turing, Biographical memoirs of the Royal Society, 1955, 253-263.

  • [21] Placek T., Mathematical Intuitionism and Intersubjectivity: A Critical Exposition of Arguments for Intuitionism, Springer Science & Business Media, 1999.

  • [22] Poincaré H., The Value of Science (French La Valeur de la Science, 1905), Dover Publications, 1958.

  • [23] Surma S. J., Deduction theorem, in: Marciszewski (ed.), Dictionary of Logic as Applied in the Study of Language. Concepts, Methods, Theories, Nijhoff, 1981, 77-81.

  • [24] Tarski A., Logic, Semantics, Metamathematics, translated by J. H. Woodger, Clarendon Press, 1956.

  • [25] Tarski A., On some fundamental concepts of metamathematics, in: Tarski A., Logic, Semantics, Metamathematics, 1956, German original published in the proceedings of the Scientific Society of Warsaw, 1930.

  • [26] Turing A., On computable numbers with an application to the Entscheidungsproblem, Proc. of the London Math. Society, Series 2, 1936, 230-265.

  • [27] Turing A., Systems of logic defined by ordinals, Proc. Lond. Math. Soc., Ser. 2, 45, 1939, 161-228.

  • [28] Webb J.C., Mechanism, Mentalism, and Metamathematics, Reidel, 1980.

  • [29] Wittgensten L., Tractatus Logico-Philosophicus, Routledge & Kegan Paul, 1921.

OPEN ACCESS

Journal + Issues

Search