The progress of science from a computational point of view: the drive towards ever higher solvability

Open access

Abstract

This essay’s content is rendered by the titles of the successive sections. 1. Effective solvability versus intuitive solvability. — 2. Decidability, i.e. effective solvability, in predicate logic. The speedup phenomenon — 3. Contributions of the second-order logic to the problems of solvability — 4. The infinite progress of science in the light of Turing’s idea of the oracle. The term “oracle” is a technical counterpart of the notion of mathematical intuition.

A more detailed summary can be obtained through juxtaposing the textboxes labelled with letters A...F. Conclusion: in the progress of science an essential role is played by the feedback between intellectual intuitions (intuitive solvability) and algorithmic procedures (effective solvability).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Benzmüller Ch. Kerber M. A Challenge for Mechanized Deduction (to find the full text in Web ask Google for the title and select the relevant PDF) 2001.

  • [2] Benzmueller Ch. Brown Ch. The Curious Inference of Boolos in Mizar and OMEGA in: Studies in Logic Grammar and Rhetoric (http://logika.uwb.edu.pl/studies/index.php?page=search&vol=23) 23 2007.

  • [3] Boolos G. A Curious Inference? Journal of Philosophical Logic 16 1987 1-12.

  • [4] Buss S.R. On Godel’s Theorems on Lengths of Proofs I: Number of Lines and Speedup for Arithmetics J. Symbolic Logic 59 3 1994 737-756.

  • [5] Fischer M.J. Rabin M.O. Super-Exponential Complexity of Presburger Arithmetic Proceedings of the SIAM-AMS Symposium in Applied Mathematics 7 1974 27-41.

  • [6] Fraenkel A.A. Abstract Set Theory North Holland 1976.

  • [7] Gödel K. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I Monatshefte für Mathematik und Physik 38 1931 173-198.

  • [8] Gödel K. Über die Lange von Beweisen Ergeb. Math. Kolloquiums 7 1936 23-24.

  • [9] Gödel K. Kurt Gödel Collected Works vol. 1. Oxford Univ. Press Oxford 1986.

  • [10] Hartmanis J. Stearns R. On the computational complexity of algorithms Transactions of the AMS 117 1965 285-306.

  • [11] Hilbert D. Ackermann W. Grundzüge der theoretischen Logik Springer 1928.

  • [12] Hilbert D. Naturerkennen und Logik Naturwissenschaften Heft 47/48/49 28.II.1930 959-963.

  • [13] Hilbert D. Bernays P. Grundlagen der Mathematik Springer (vol. 1) 1934 (vol. 2) 1939.

  • [14] Kneale W. Kneale M. The Development of Logic Clarendon Press 1962.

  • [15] Kuhn T. The Structure of Scientific Revolutions University of Chicago Press 1962 rev. ed. 1970.

  • [16] Marciszewski W. (ed.) Dictionary of Logic as Applied in the Study of Language. Concepts Methods Theories Nijhoff 1981.

  • [17] Marciszewski W. Murawski R. Mechanization of Reasoning in a Historical Perspective Rodopi 1995.

  • [18] Marciszewski W. Hypercomputational vs. computational complexity. A challenge for methodology of the social sciences in: Free Market and Computational Complexity. Essays in Commemoration of Friedrich Hayek (1899-1992) of the series Studies in Logic Grammar and Rhetoric (http://logika.uwb.edu.pl/studies/index.php?page=search&vol=18) 5(18) 2002.

  • [19] Marciszewski W. The Gödelian Speed-up and Other Strategies to Address Decidability and Tractability Studies in Logic Grammar and Rhetoric 9(22) 2006.

  • [20] Newman M. H. A. Alan Mathison Turing Biographical memoirs of the Royal Society 1955 253-263.

  • [21] Placek T. Mathematical Intuitionism and Intersubjectivity: A Critical Exposition of Arguments for Intuitionism Springer Science & Business Media 1999.

  • [22] Poincaré H. The Value of Science (French La Valeur de la Science 1905) Dover Publications 1958.

  • [23] Surma S. J. Deduction theorem in: Marciszewski (ed.) Dictionary of Logic as Applied in the Study of Language. Concepts Methods Theories Nijhoff 1981 77-81.

  • [24] Tarski A. Logic Semantics Metamathematics translated by J. H. Woodger Clarendon Press 1956.

  • [25] Tarski A. On some fundamental concepts of metamathematics in: Tarski A. Logic Semantics Metamathematics 1956 German original published in the proceedings of the Scientific Society of Warsaw 1930.

  • [26] Turing A. On computable numbers with an application to the Entscheidungsproblem Proc. of the London Math. Society Series 2 1936 230-265.

  • [27] Turing A. Systems of logic defined by ordinals Proc. Lond. Math. Soc. Ser. 2 45 1939 161-228.

  • [28] Webb J.C. Mechanism Mentalism and Metamathematics Reidel 1980.

  • [29] Wittgensten L. Tractatus Logico-Philosophicus Routledge & Kegan Paul 1921.

Search
Journal information
Impact Factor


CiteScore 2018: 0.61

SCImago Journal Rank (SJR) 2018: 0.152
Source Normalized Impact per Paper (SNIP) 2018: 0.463

Mathematical Citation Quotient (MCQ) 2018: 0.08

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 180 180 3
PDF Downloads 132 132 1