Robust and Reliable Portfolio Optimization Formulation of a Chance Constrained Problem

Open access


We solve a linear chance constrained portfolio optimization problem using Robust Optimization (RO) method wherein financial script/asset loss return distributions are considered as extreme valued. The objective function is a convex combination of portfolio’s CVaR and expected value of loss return, subject to a set of randomly perturbed chance constraints with specified probability values. The robust deterministic counterpart of the model takes the form of Second Order Cone Programming (SOCP) problem. Results from extensive simulation runs show the efficacy of our proposed models, as it helps the investor to (i) utilize extensive simulation studies to draw insights into the effect of randomness in portfolio decision making process, (ii) incorporate different risk appetite scenarios to find the optimal solutions for the financial portfolio allocation problem and (iii) compare the risk and return profiles of the investments made in both deterministic as well as in uncertain and highly volatile financial markets.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Adida E. and Perakis G. A robust optimization approach to dynamic pricing and inventory control with no backorders. Mathematical Programming107 2006 97-129.

  • [2] Atamtäurk A. Strong formulations of Robust Mixed 0-1 programming. Mathematical Programming: Series (B)108 2006 235-250.

  • [3] Atamtäurk A. and Zhang M. Two-stage Robust Network flow and Design under Demand Uncertainty. Operations Research55 2007 662-673.

  • [4] Ben-Tal A. Bertsimas D. and Brown D. B. A Soft Robust Model for Optimization under Ambiguity. Operations Research58 2010 1220-1234.

  • [5] Ben-Tal A. Boyd S. and Nemirovski A. Extending the scope of robust optimization. Mathematical Programming: Series (B)107 2006 63-89.

  • [6] Ben-Tal A. El Ghaoui L. and Nemirovski A. Robust semidefinite programming in Semi-definite programming and applications R. Saigal Vandenberghe H. Wolkowicz (Edited) Kluwer Academic Publishers 2000a.

  • [7] Ben-Tal A. El-Ghaoui L. and Nemirovski A. Robust optimization: Princeton Series in Applied Mathematics. Princeton University Press Princeton NJ 2009.

  • [8] Ben-Tal A. Golany B. Nemirovski A. and Vial J. P. Supplier-retailer flexible commitments contracts: A Robust Optimization Approach. Manufacturing and Service Operations Management7 2005 248-271.

  • [9] Ben-Tal A. Goryashko A. Guslitzer E. and Nemirovski A. Adjustable Robust solutions of uncertain linear Programs. Mathematical Programming99 2004 351-376.

  • [10] Ben-Tal A. Margalit T. and Nemirovski A. Robust modeling of multi-stage portfolio problems; High Performance Optimization Frenk H. Roos C. Terlaky T. Zhang S. (Edited) Kluwer Academic Publishers 2000b 303–328.

  • [11] Ben-Tal A. and Nemirovski A. Robust truss topology design via semi-definite programming. SIAM Journal on Optimization7 1997 991-1016.

  • [12] Ben-Tal A. and Nemirovski A. Robust convex optimization. Mathematics of Operations Research 23 1998 769-805.

  • [13] Ben-Tal A. and Nemirovski. A Robust solutions to uncertain linear programs. Operations Research Letters25 1999 1–13.

  • [14] Ben-Tal A. and Nemirovski A. Robust solutions of Linear Programming problems contaminated with uncertain data. Mathematical Programming: Series (A). 88 2000c 411-424.

  • [15] Ben-Tal A. and Nemirovski A. Lectures on modern convex optimization: Analysis algorithms and engineering applications MPR-SIAM Series on Optimization SIAM Philadelphia 2001a.

  • [16] Ben-Tal A. and Nemirovski A. On approximate Robust counterparts of uncertain semi-definite and conic quadratic programs. Proceedings of 20th IFIP TC7 Conference on System Modelling and Optimization July 23-27 Trier Germany 2001b.

  • [17] Ben-Tal A. and Nemirovski A. Robust optimization–Methodology and Applications. Mathematical Programming: Series (B)92 2002a 453-480.

  • [18] Ben-Tal A. and Nemirovski A. On tractable approximations of uncertain linear matrix inequalities affected by interval uncertainty. SIAM Journal on Optimization12 2002b 811-833.

  • [19] Ben-Tal A. Nemirovski A. and Roos C. Robust solutions of uncertain quadratic and conic-quadratic problems. SIAM Journal on Optimization13 2002c 535-560.

  • [20] Bertsekas D. P. Dynamic Programming and Optimal Control (Volume: I). Athena Scientific Belmont Massachusetts USA 1995.

  • [21] Bertsimas D. and Caramanis C. Finite adaptability in Multistage Linear Optimization. IEEE Transactions on Automatic Control55 2007 2751-2766.

  • [22] Bertsimas D. and Brown David B. Constructing Uncertainty Sets for Robust Linear Optimization Operations Research57 2009 1483-1495.

  • [23] Bertsimas D. Brown D. B. and Caramanis C. Theory and Applications of Robust Optimization. SIAM Review53 2011 464-501.

  • [24] Bertsimas D. Nohadani O. and Teo K. M. Robust Optimization for Unconstrained Simulation-based Problems. Operations Research58 2010 161-178.

  • [25] Bertsimas D. Pachamanova D. and Sim M. Robust linear optimization under general norms. Operations Research Letters32 2004 510-516.

  • [26] Bertsimas D. and Popescu I. Optimal inequalities in probability theory: A convex optimization approach. SIAM Journal of Optimization15 2004 780-800.

  • [27] Bertsimas D. and Sim M. Robust discrete optimization and network flows. Mathematical Programming: Series: Series (B)98 2003 49-71.

  • [28] Bertsimas D. and Sim M. The price of robustness. Operations Research 52 2004 35-53.

  • [29] Bertsimas D. and Sim M. Tractable approximations to robust conic optimization problems. Mathematical Programming: Series (B)107 2006 5-36.

  • [30] Bertsimas D. and Thiele A. A robust optimization approach to supply chain management. Operations Research54 2006 150-168.

  • [31] Bertsimas D. and Tsitsiklis J. Introduction to Linear Optimization. Athena Scientific 1997.

  • [32] Beyer H-G. and Sendhoff B. Robust optimization–A comprehensive survey. Computer Methods in Applied Mechanics and Engineering196 2007 3190-3128.

  • [33] Bienstock D Histogram models for robust portfolio optimization. Journal of Computational Finance11 2007 1-64.

  • [34] Birge J. R. and Louveaux F. Introduction to Stochastic Programming. Springer-Verlag 1997.

  • [35] Boyd S. El Ghaoui L. Feron E. and Balakrishnan V. Linear Matrix Inequalities in System and Control Theory. SIAM 1994.

  • [36] Boyd S. Kim S. J. Patil D. and Horowitz M. Digital circuit sizing via geometric programming. Operations Research53 2005 899-932.

  • [37] Boyd S. and Vandenberghe L. Semidefinite programming. SIAM Review38 1996 49-95.

  • [38] Boyd S. and Vandenberghe L. Convex Optimization. Cambridge University Press 2004.

  • [39] Chen W. and Sim M. Goal Driven Optimization. Operations Research. 57 2009 342-357.

  • [40] Chen W. Sim M. Sun J. and Teo Chung-Piaw From CVaR to Uncertainty Set: Implications in Joint Chance Constrained Optimization Operations Research58 2010 470-485.

  • [41] Chen X. Sim M. and Sun P. A robust optimization perspective to stochastic programming. Operations Research55 2007 1058-1071.

  • [42] Chen X. Sim M. Sun P. and Zhang J. A linear-decision based approximation approach to stochastic programming. Operations Research56 2008 344-357.

  • [43] Chen X. and Zhang Y. Uncertain Linear Programs: Extended Affinely Adjustable Robust Counterparts. Operations Research57 2009 1469-1482.

  • [44] Dembo R. Scenario optimization Annals of Operations Research30 1991 63-80.

  • [45] Duzgun R. and Thiele A. Dynamic models of Robust optimization in J. Cochran editors Encyclopedia of Operations Research and Management Science Wiley New York 2011.

  • [46] El Ghaoui L. and Lebret H. Robust solutions to least-square problems with uncertain data matrices. SIAM Journal of Matrix Analysis and Applications18 1997 1035–1064.

  • [47] El Ghaoui L. Oustry F. and Lebret H. Robust solutions to uncertain semi-definite programs. SIAM Journal on Optimization9 1998 33–52.

  • [48] El Ghaoui L. Maksim Oks. and Oustry F. Worst-Case Value-at-Risk and Robust Portfolio Optimization: A Conic Programming Approach. Operations Research51 2003 543-556.

  • [49] Fabozzi Frank J. Huang D. and Zhou G. Robust portfolios: contributions from operations research and finance Annals of Operations Research176 2010 191-220.

  • [50] Fabozzi Frank J. Kolm P. N. Pachamanova D. A. and Focardi S. M Robust Portfolio Optimization. Journal of Portfolio Management33 2007 40-48.

  • [51] Goldfarb D. and Iyengar G. Robust Portfolio Selection Problems. Mathematics of Operation Research28 2003 1-38.

  • [52] Gotoh J Shinozaki K. and Takeda A. Robust Portfolio Techniques for Mitigating the Fragility of CVaR Minimization and Generalization to Coherent Risk Measures Quantitative Finance13 2013 1621-1635.

  • [53] Halldórsson B. V. and Tütüncü R. H. An interior-point method for a class of saddle point problems. Journal of Optimization Theory and Applications116 2003 559-590.

  • [54] Huang D. Zhu Shu-Shang. Fabozzi Frank J. and Fukushima M. Portfolio selection with uncertain exit time: A robust CVaR approach Journal of Economic Dynamics and Control32 2008 594–623.

  • [55] Iyengar G. Robust dynamic programming. Mathematics of Operations Research30 1994 257-280.

  • [56] Kall P. and Wallace S. Stochastic Programming. John Wiley & Sons 1994.

  • [57] Kouvelis P. and Yu G. Robust discrete optimization and its applications. Kluwer Academic Publishers Norwell MA 1997.

  • [58] Lahiri S. N. On the moving block bootstrap under long range dependence Statistics and Probability Letters. 18 1993 405-413.

  • [59] Lahiri S. N. Resampling methods for dependent data Springer New York 2003.

  • [60] Markowitz H. Portfolio Selection The Journal of Finance7 1952 77-91.

  • [61] Mulvey J. Vanderbei R. and Zenios S. Robust optimization of large-scale systems. Operations Research43 1995 264-281.

  • [62] Nemhauser G. L. and Wolsey L. A.. Integer and Combinatorial Optimization. Wiley-Interscience Series in Dicrete Mathematics and Optimization USA 1988.

  • [63] Pinar M. and Tütüncü R. Robust profit opportunities in risky financial portfolios Operations Research Letters33 2005 331-340.

  • [64] Prékopa A. Stochastic Programming. Kluwer 1995.

  • [65] Shapiro A. On complexity of multistage stochastic programs. Operations Research Letters34 2006 1-8.

  • [66] Sim M. and Goh J. Robust Optimization Made Easy with ROME. Operations Research59 2011 973-985.

  • [67] Sniedovich M. The art and science of modeling decision-making under severe uncertainty Decision Making in Manufacturing and Services1 2007 111-136.

  • [68] Soyster A. L. Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations Research 21 1973 1154-1157.

  • [69] Tütüncü R. H. and Koenig M. Robust asset allocation. Annals of Operations Research132 2004 157-187.

  • [70] Zhou K. Doyle J. C. and Glove K. Robust and Optimal Control. Prentice-Hall NJ 1996.

  • [71] Zhu S. and Fukushima M. Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management Operations Research57 2009 1155-1168.

Journal information
Impact Factor

CiteScore 2018: 0.61

SCImago Journal Rank (SJR) 2018: 0.152
Source Normalized Impact per Paper (SNIP) 2018: 0.463

Mathematical Citation Quotient (MCQ) 2017: 0.02

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 428 236 6
PDF Downloads 279 188 5