Agent-Based Evolutionary Method of Simulation the Co2 Emission Permits Market

Open access


This article describes the problem of simulation of the CO2 emission permits market. First, it introduces a CO2 permission market model with transactions and purchase prices, in particular with a separate goal function for each party, transactions with price negotiations between regions and - as a consequence of introducing prices for permits - the possibility of investigating the influence of purchase/sale prices on the market. The behavior of such market model is simulated using a method, which is based on a specialized evolutionary method but introduces independent agents with their own transaction preferences.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Alkemade F. La Poutre H. Amman H. M. Robust Evolutionary Algorithm Design for Socio-economic Simulation Computational Economics 28 2006 pp. 355-470.

  • [2] Bartoszczuk P. Horabik J. Tradable Permit Systems: Considering Uncertainty in Emission Estimates Water Air Soil Pollution: Focus (2007) 7 Springer Verlag 2007 pp 573-579.

  • [3] Bonatti M. Ermoliev Y. Gaivoronski A. Modeling of multi-agent market systems in the presence of uncertainty: The case of information economy Robotics andAutonomous Systems Vol. 24 Issue 3-4 1998 pp. 93-113.

  • [4] Cichosz P. Systemy uczące się (Learning systems; in Polish) WNT Warszawa 2000.

  • [5] Clemens C. Riechmann T. Evolutionary Dynamics in Public Good Games Computational Economics 28 2006 pp. 399-420.

  • [6] Ermoliev Y. Klaassen G. Nentjes A. Adaptive cost-effective ambient charges under incomplete information Journal of Environmental Economics and Management 31 1996 pp. 37-48.

  • [7] Ermoliev Y. Michalevich M. Nentjes A. Markets for Tradable Emission and Ambient Permits: A dynamic approach Environmental and Resource Economics 15 2000 pp. 39-56.

  • [8] Godal O. Simulating the Carbon Permit Market with Imperfect Observations of Emissions: Approaching Equilibrium through Sequential Bilateral Trade InterimReport IR-00-060 IIASA Laxenburg Austria 2000.

  • [9] Horabik J. On the costs of reducing GHG emissions and its underlying uncertainties in the context of carbon trading Raport Badawczy RB/34/2005 IBS PAN 2005.

  • [10] Klaasen G. Nentjes A. Smith M. Testing the dynamic theory of emissions trading: Experimental evidence for global carbon trading Interim Report IR-01-063 IIASA Laxenburg Austria 2001.

  • [11] Klaasen G. Matrosov I. Roehrl A. Tarasyev A. A Game-Dynamic Model of Gas Transportation Routes and Its Application to the Turkish Gas Market Interim ReportIR-03-018 IIASA Laxenburg Austria 2003.

  • [12] Mutlu F. Fescioglu-Unver N. Agent Based Simulation of Carbon Emissions Trading Market Proceedings of PICMET '11 (Technology Management in the Energy SmartWorld) 2011 pp. 1-10.

  • [13] Nahorski Z. Horabik J. Jonas M. Compliance and emissions trading under the Kyoto protocol; Rules for Uncertain Inventories Water Air & Soil Pollution: Focus Vol. 7 Numbers 4-5 Springer Verlag 2007 pp. 539-558.

  • [14] Stańczak J. Evolutionary algorithm for market simulations Evolutionary Computationand Global Optimization 2009 Prace Naukowe PW Elektronika z. 169 Warszawa 2009 pp. 163-172.

  • [15] Stańczak J. Application of an evolutionary algorithm to simulation of the CO2 emission permits market with purchase prices Badania operacyjne i decyzje 4 2009 pp. 93-108.

  • [16] Stańczak J. Bartoszczuk P. CO2 emission trading model with trading prices ClimaticChange 103 (1-2) 2010 pp. 291-301.

Journal information
Impact Factor

CiteScore 2018: 0.61

SCImago Journal Rank (SJR) 2018: 0.152
Source Normalized Impact per Paper (SNIP) 2018: 0.463

Mathematical Citation Quotient (MCQ) 2017: 0.02

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 116 40 2
PDF Downloads 71 39 0