Water Retention in a Small Agricultural Catchment and its Potential Improvement by Design of Water Reservoirs – A Case Study of the Bílý Potok Catchment (Czechia)

Open access


Water retention in the landscape is discussed in the context of conservation and improvement of both its productive and non-productive functions. We analysed the retention potential of a small agricultural catchment associated with the Bílý potok brook, investigating the possibility to improve its retention capacity and slow down the surface runoff, thus increasing the underground water resources. Method of curve numbers was used for that purposes. From results, it emerged that present maximum water retention in the Bílý potok catchment is 96.2 mm. It could increase by 101.3 mm in case of grassing about 20% arable land threatened by soil erosion. As next possibility to retain water from precipitations in landscape, capacity and transformation effect of reservoirs designed in master plans was analysed. The latest programming tools working in the GIS environment were used to assess the retention capacity of both the catchment surface and the reservoirs. Analysing master plans in the catchment, it was found that 16 designed water reservoirs (from 31) have a good potential to intercept water and transform flood discharges. In the result, priority for building of reservoirs was recommended according to their pertinence and efficiency in the studied catchment. Presented complex approach can be widely implemented, especially for better effectivity and cohesion of landscape planning and land consolidations processes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Bastian O. & Steinhardt U. eds. (2002). Development and perspectives of landscape ecology. Dordrecht: Kluwer Academic Publishers. DOI: 10.1007/978-94-017-1237-8.

  • [2] Bízek V. et al. 2011. Aplikace modelů v oblasti životního prostředí. Prague: Cenia.

  • [3] Doležal P. & Feltl J. (2012). Využití prostorově založeného srážkoodtokového modelu k návrhům malých vodních nádrží s retenčním účinkem. Littera Scripta 5(1): 201–213.

  • [4] Dumbrovský M. Korsuň S. (2009). Optimisation of soil conservation systems within integrated territorial protection. Soil and Water Research 4(2) 57–65.

  • [5] Hassall C. (2014). The ecology and biodiversity of urban ponds. Wiley Interdisciplinary Review: Water 1(2) 187–206. DOI 10.1002wat2.1014.

  • [6] Janeček M. et al. (2012). Ochrana zemědělské půdy před erozí. [Certifikovaná metodika]. Praha: ČZU: Powerprint.

  • [7] Konečná J. (2013). Hodnocení realizací protierozních a vodohospodářských zařízení v pozemových úpravách. [Disertační práce]. Brno: Mendelova univerzita v Brně.

  • [8] Konečná J. Podhrázská J. & Toman F. (2012). Efficiency of soil and flood control measures in land consolidations. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunesis 60(6) 161–166. DOI: 10.11118/actaun201260060161.

  • [9] Kovář P. (2006). The extent of land use impact on water regime. Plant Soil and Environment 52(6) 239–244.

  • [10] Loucks D. P. & van Beek E. (2005). Water resources system planning and management. Paris: UNESCO. DOI: 10.1007/978-3-319-44234-1.

  • [11] McCuen R. H. Knight Z. & Cutter G. (2006). Evaluation of the Nash-Sutcliffe efficiency index. Journal of Hydrologic Engineering 11(6) 597–602. DOI: 10.1061/(ASCE)1084-0699(2006)11:6(597).

  • [12] Mishra S. K. & Singh V. (2003). Soil Conservation Service curve number methodology. Dordrecht: Springer Netherlands. DOI: 10.1007/978-94-017-0147-1.

  • [13] Neitsch S. L. Arnold J. G. Kiniry J. R. & Williams J. R. (2005). Soil and water assessment tool. [Theoretical documentation. Version 2005]. Temple: Texas Agricultural Experimental Station.

  • [14] Pochop M. Konečná J. Podhrázská J. & Kyselka I. (2016). Support of development of landscape not-production functions in spatial planning and land consolidations. In Fialová J. & Pernicová D. eds. Public recreation and landscape protection – with nature hand in hand (pp. 249–256). Brno: Mendel University in Brno.

  • [15] Podhrázská J. & Spitz P. (2000). Hodnocení retenční schopnosti krajiny při povodni. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunesis 49(3) 39–45.

  • [16] Singh P. K. Mishra S. K. & Jain M. K. (2014). A review of the synthetic unit hydrograph: from the empirical UH to advanced geomorphological methods. Hydrological Sciences Journal 59(2) 239–261. DOI: 10.1080/02626667.2013.870664.

  • [17] Singh V. P. Woolhiser D. A. (2002). Mathematical modelling of watershed hydrology. Journal of Hydrologic Engineering 7(4) 270–292. DOI: 10.1061/(ASCE)1084-0699(2002)7:4(270).

  • [18] Soulis K. X. Valiantzas J. D. (2012). SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds. Hydrology and Earth Systems 16 1001–1015. DOI: 10.5194/hess-16-1001-2012.

  • [19] Šercl P. (2009). Vliv fyzicko-geografických faktorů na charakteristiky teoretických návrhových povodňových vln. In Sborník prací Českého hydrometeorologického ústavu 54.

  • [20] Williamson C. E. Saros J. E. Vincent W. F. & Smop J. P. (2009). Lakes and reservoirs as sentinels integrators and regulators of climate change. Limnology and Oceanography 54(6) 2273–222. DOI: 10.4319/lo.2009.54.6_part_2.2273.

  • [21] Zhao G. et al. (2013). Soil erosion conservation and ecoenvironment changes in the loess plateau of China. Land Degradation and Development 24(5) 499–510. DOI: 10.1002/ldr.2246.

  • [22] Zubala T. (2009). Influence of dam reservoir on the water quality in a small upland river. Ecohydrology and Hydrobiology 9(2–4) 165–173. DOI: 10.2478/v10104-010-0010-3.

  • [23] ČÚZK. ©2010. [On line] Available at: http://geoportal.cuzk.cz. [Accessed: 2017 June 15].

  • [24] ČÚZK. ©2013. [On line] Available at: http://services.cuzk.cz. [Accessed: 2017 June 15].

  • [25] HEC. ©2003. [On line] Available at: http://www.hec.usace.army.mil/software/hec-hms/. [Accessed: 2017 March 2].

  • [26] MZE ČR. ©2009. [On line] Available at: http://eagri.cz/public/web/mze/farmar/LPIS/. [Accessed: 2017 June 8].

  • [27] VÚMOP v.v.i. ©2016. [On line] Available at: http://geoportal.vumop.cz. [Accessed: 2017 May 20].

  • [28] VÚV TGM. ©2017. [On line] Available at: http://www.dibavod.cz. [Accessed: 2017 May 3].

Journal information
Impact Factor

CiteScore 2018: 0.85

SCImago Journal Rank (SJR) 2018: 0.288
Source Normalized Impact per Paper (SNIP) 2018: 0.651

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 278 148 0
PDF Downloads 167 99 0