Open Access

Aldosterone rapidly activates p-PKC delta and GPR30 but suppresses p-PKC epsilon protein levels in rat kidney


Cite

Objectives. Aldosterone rapidly enhances protein kinase C (PKC) alpha and beta1 proteins in the rat kidney. The G protein-coupled receptor 30 (GPR30)-mediated PKC pathway is involved in the inhibition of the potassium channel in HEK-239 cells. GPR30 mediates rapid actions of aldosterone in vitro. There are no reports available regarding the aldosterone action on other PKC isoforms and GPR30 proteins in vivo. The aim of the present study was to examine rapid actions of aldosterone on protein levels of phosphorylated PKC (p-PKC) delta, p-PKC epsilon, and GPR30 simultaneously in the rat kidney.

Methods. Male Wistar rats were intraperitoneally injected with normal saline solution or aldosterone (150 µg/kg body weight). After 30 minutes, abundance and immunoreactivity of p-PKC delta, p-PKC epsilon, and GPR30 were determined by Western blot analysis and immunohisto-chemistry, respectively.

Results. Aldosterone administration significantly increased the renal protein abundance of p-PKC delta by 80% (p<0.01) and decreased p-PKC epsilon protein by 50% (p<0.05). Aldosterone injection enhanced protein immunoreactivity of p-PKC delta but suppressed p-PKC epsilon protein intensity in both kidney cortex and medulla. Protein abundance of GPR30 was elevated by aldosterone treatment (p<0.05), whereas the immunoreactivity was obviously changed in the kidney cortex and inner medulla. Aldosterone translocated p-PKC delta and GPR30 proteins to the brush border membrane of proximal convoluted tubules.

Conclusions. This is the first in vivo study simultaneously demonstrating that aldosterone administration rapidly elevates protein abundance of p-PKC delta and GPR30, while p-PKC epsilon protein is suppressed in rat kidney. The stimulation of p-PKC delta protein levels by aldosterone may be involved in the activation of GPR30.

eISSN:
1336-0329
Language:
English