Multiple functions and essential roles of nuclear receptor coactivators of bHLH-PAS family

Open access

Abstract

Classical non-peptide hormones, such as steroids, retinoids, thyroid hormones, vitamin D3 and their derivatives including prostaglandins, benzoates, oxysterols, and bile acids, are collectively designated as small lipophilic ligands, acting via binding to the nuclear receptors (NRs). The NRs form a large superfamily of transcription factors that participate virtually in every key biological process. They control various aspects of animal development, fertility, gametogenesis, and numerous metabolic pathways, and can be misregulated in many types of cancers. Their enormous functional plasticity, as transcription factors, relates in part to NR-mediated interactions with plethora of coregulatory proteins upon ligand binding to their ligand binding domains (LBD), or following covalent modification. Here, we review some general views of a specific group of NR coregulators, so-called nuclear receptor coactivators (NRCs) or steroid receptor coactivators (SRCs) and highlight some of their unique functions/roles, which are less extensively mentioned and discussed in other reviews. We also try to pinpoint few neglected moments in the cooperative action of SRCs, which may also indicate their variable roles in the hormone-independent signaling pathways.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • An BS Selva DM Hammond GL Rivero-Muller A Rahman N Leung PC. Steroid receptor coactivator-3 is required for progesterone receptor trans-activation of target genes in response to gonadotropin-releasing hormone treatment of pituitary cells. J Biol Chem 281 20817-20824 2006.

  • Awais M Sato M Umezawa Y. Imaging of selective nuclear receptor modulator-induced conformational changes in the nuclear receptor to allow interaction with coactivator and corepressor proteins in living cells. Chembiochem 8 737-743 2007.

  • Beischlag TV Luis Morales J Hollingshead BD Perdew GH. The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr 18 207-250 2008.

  • Bisson WH Cheltsov AV Bruey-Sedano N Lin B Chen J Goldberger N May LT Christopoulos A Dalton JT Sexton PM Zhang XK Abagyan R. Discovery of antiandrogen activity of nonsteroidal scaffolds of marketed drugs. Proc Natl Acad Sci USA 104 11927-11932 2007.

  • Black JC Choi JE Lombardo SR Carey M. A mechanism for coordinating chromatin modification and preinitiation complex assembly. Mol Cell 23 809-818 2006.

  • Buhr ED Takahashi JS. Molecular components of the mammalian circadian clock. In: Handbook of Experimental Pharmacology (Ed. A Kramer M Merrow) 217 pp. 3-27 2013.

  • Buzon V Carbo LR Estruch SB Fletterick RJ Estebanez-Perpina E. A conserved surface on the ligand binding domain of nuclear receptors for allosteric control. Mol Cell Endocrinol 348 394-402 2012.

  • Carlsson P Koehler KF Nilsson L. Glucocorticoid receptor point mutation V571M facilitates coactivator and ligand binding by structural rearrangement and stabilization. Mol Endocrinol 19 1960-1977 2005.

  • Chang AK Wu H. The role of AIB1 in breast cancer. Oncol Lett 4 588-594 2012.

  • Chaudhary J Skinner MK. Basic helix-loop-helix proteins can act at the E-box within the serum response element of the c-fos promoter to influence hormone-induced promoter activation in Sertoli cells. Mol Endocrinol 13 774-786 1999.

  • Chen JD Evans RM. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377 454-457 1995.

  • Chopra AR Kommagani R Saha P Louet JF Salazar C Song J Jeong J Finegold M Viollet B DeMayo F Chan L Moore DD O’Malley BW. Cellular energy depletion resets whole-body energy by promoting coactivatormediated dietary fuel absorption. Cell Metab 13 35-43 2011.

  • Costantino G Entrena-Guadix A Macchiarulo A Gioiello A Pellicciari R. Molecular dynamics simulation of the ligand binding domain of farnesoid X receptor. Insights into helix-12 stability and coactivator peptide stabilization in response to agonist binding. J Med Chem 48 3251-3259 2005.

  • Darimont BD. Finding specificity within a conserved interaction site. Chem Biol 10 675-676 2003.

  • Dasgupta S Lonard DM O’Malley BW. Nuclear receptor coactivators: master regulators of human health and disease. Annu Rev Med 65 279-292 2014.

  • Davis JN Williams BJ Herron JT Galiano FJ Meyers S. ETO-2 a new member of the ETO-family of nuclear proteins. Oncogene 18 1375-1383 1999.

  • Demizu Y Nagoya S Shirakawa M Kawamura M Yamagata N Sato Y Doi M Kurihara M. Development of stapled short helical peptides capable of inhibiting vitamin D receptor (VDR)-coactivator interactions. Bioorg Med Chem Lett 23 4292-4296 2013.

  • Ding L Yang L Wang Z Huang W. Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharm Sin B5 135-144 2015.

  • D’Rozario M Zhang T Waddell EA Zhang Y Sahin C Sharoni M Hu T Nayal M Kutty K Liebl F Hu W Marenda DR. Type I bHLH Proteins Daughterless and Tcf4 Restrict Neurite Branching and Synapse Formation by Repressing Neurexin in Postmitotic Neurons. Cell Rep 15 386-397 2016.

  • Dutertre M Smith CL. Ligand-independent interactions of p160/steroid receptor coactivators and CREB-binding protein (CBP) with estrogen receptor-alpha: regulation by phosphorylation sites in the A/B region depends on other receptor domains. Mol Endocrinol 17 1296-1314 2003.

  • Elhaji YA Stoica I Dennis S Purisima EO Lumbroso R Beitel LK Trifiro MA. Impaired helix 12 dynamics due to proline 892 substitutions in the androgen receptor are associated with complete androgen insensitivity. Hum Mol Genet 15 921-31 2006.

  • Endler A Chen L Shibasaki F. Coactivator recruitment of AhR/ARNT1. Int J Mol Sci 15 11100-11110 2014.

  • Evans RM. The steroid and thyroid hormone receptor superfamily. Science 240 889-895 1988.

  • Farah MH Olson JM Sucic HB Hume RI Tapscott SJ Turner DL. Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 127 693-702 2000.

  • Feng Q Yi P Wong J O’Malley BW. Signaling within a coactivator complex: methylation of SRC-3/AIB1 is a molecular switch for complex disassembly. Mol Cell Biol 26 7846-7857 2006.

  • Fidelak J Ferrer S Oberlin M Moras D Dejaegere A Stote RH. Dynamic correlation networks in human peroxisome proliferator-activated receptor-γ nuclear receptor protein. Eur Biophys J 39 1503-1512 2010.

  • Gallastegui N Mackinnon JA Fletterick RJ Estebanez-Perpina E. Advances in our structural understanding of orphan nuclear receptors. Trends Biochem Sci 40 25-35 2015.

  • Gehin M Mark M Dennefeld C Dierich A Gronemeyer H Chambon P. The function of TIF2/GRIP1 in mouse reproduction is distinct from those of SRC-1 and p/CIP. Mol Cell Biol 22 5923-5937 2002.

  • Gupte R Muse GW Chinenov Y Adelman K Rogatsky I. Glucocorticoid receptor represses proinflammatory genes at distinct steps of the transcription cycle. Proc Natl Acad Sci USA 110 14616-14621 2013.

  • Han SJ Jung SY Malovannaya A Kim T Lanz RB Qin J O’Malley BW. A scoring system for the follow up study of nuclear receptor coactivator complexes. Nucl Recept Signal 4 e014 2006.

  • Han SJ Hawkins SM Begum K Jung SY Kovanci E Qin J Lydon JP DeMayo FJ O‘Malley BW. A new isoform of steroid receptor coactivator-1 is crucial for pathogenic progression of endometriosis. Nature Med 18 1102-1111 2012.

  • Harms MJ Eick GN Goswami D Colucci JK Griffin PR Ortlund EA Thornton JW. Biophysical mechanisms for large-effect mutations in the evolution of steroid hormone receptors. Proc Natl Acad Sci USA 110 11475-11480 2013.

  • He B Kemppainen JA Wilson EM. FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J Biol Chem 275 22986-22994 2000.

  • Hefti MH Francoijs KJ de Vries SC Dixon R Vervoort J. The PAS fold. A redefinition of the PAS domain based upon structural prediction. Eur J Biochem 27 1198-208 2004.

  • Heldin CH Lu B Evans R Gutkind JS. Signals and Receptors. Cold Spring Harb Perspect Biol 8 2016.

  • Hjalt T. Basic helix-loop-helix proteins expressed during early embryonic organogenesis. Int Rev Cytol 236 251-280 2004.

  • Hong H Kohli K Garabedian MJ Stallcup MR. GRIP1 a transcriptional coactivator for the AF-2 transactivation domain of steroid thyroid retinoid and vitamin D receptors. Mol Cell Biol May 17 2735-2744 1997.

  • Hsieh HT Wang CH Wu ML Yang FM Tai YC Hu MC. PIASy inhibits LRH-1-dependent CYP11A1 expression by competing for SRC-1 binding. Biochem J 419 201-209 2009.

  • Hsu CL Chen YL Yeh S Ting HJ Hu YC Lin H Wang X Chang C. The use of phage display technique for the isolation of androgen receptor interacting peptides with (F/W)XXL(F/W) and FXXLY new signature motifs. J Biol Chem 278 23691-23698 2003.

  • Huang N Chelliah Y Shan Y Taylor CA Yoo SH Partch C Green CB Zhang H Takahashi JS. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science 337 189-194 2012.

  • Hughes TS Chalmers MJ Novick S Kuruvilla DS Chang MR Kamenecka TM Rance M Johnson BA Burris TP Griffin PR Kojetin DJ. Ligand and receptor dynamics contribute to the mechanism of graded PPARγ agonism. Structure 20 139-150 2012.

  • Jasuja R Ulloor J Yengo CM Choong K Istomin AY Livesay DR Jacobs DJ Swerdloff RS Miksovska J Larsen RW Bhasin S. Kinetic and thermodynamic characterization of dihydrotestosterone-induced conformational perturbations in androgen receptor ligand-binding domain. Mol Endocrinol 23 1231-1241 2009.

  • Jones S. An overview of the basic helix-loop-helix proteins. Genome Biol 5 226 2004.

  • Jung SY Malovannaya A Wei J O’Malley BW Qin J. Proteomic analysis of steady-state nuclear hormone receptor coactivator complexes. Mol Endocrinol 19 2451-2465 2005.

  • Kastner P Mark M Chambon P. Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 83 859-869 1995.

  • Kim MS Sweeney TR Shigenaga JK Chui LG Moser A Grunfeld C Feingold KR. Tumor necrosis factor and interleukin 1 decrease RXRalpha PPARalpha PPARgamma LXRalpha and the coactivators SRC-1 PGC-1alpha and PGC-1beta in liver cells. Metabolism 56 267-279 2007.

  • King-Jones K Thummel CS. Nuclear receptors - a perspective from Drosophila. Nature Rev Genet 6 311-323 2005.

  • Kitabayashi I Ida K Morohoshi F Yokoyama A Mitsuhashi N Shimizu K Nomura N Hayashi Y Ohki M. The AML1-MTG8 leukemic fusion protein forms a complex with a novel member of the MTG8(ETO/CDR) family MTGR1. Mol Cell Biol 18 846-858 1998.

  • Klinge CM Jernigan SC Mattingly KA Risinger KE Zhang J. Estrogen response element-dependent regulation of transcriptional activation of estrogen receptors alpha and beta by coactivators and corepressors. J Mol Endocrinol 33 387-410 2004.

  • Kokubo T Gong DW Roeder RG Horikoshi M Nakatani Y. The Drosophila 110-kDa transcription factor TFIID subunit directly interacts with the N-terminal region of the 230-kDa subunit. Proc Natl Acad Sci USA 90 5896-5900 1993.

  • Laffitte BA Kast HR Nguyen CM Zavacki AM Moore DD Edwards PA. Identification of the DNA binding specificity and potential target genes for the farnesoid X-activated receptor. J Biol Chem 275 10638-10647 2000.

  • Lee YH Coonrod SA Kraus WL Jelinek MA Stallcup MR. Regulation of coactivator complex assembly and function by protein arginine methylation and demethylimination. Proc Natl Acad Sci USA 102 3611-3616 2005.

  • Leo C Chen JD. The SRC family of nuclear receptor coactivators. Gene 245 1-11 2000.

  • Li H Chen JD. The receptor-associated coactivator 3 activates transcription through CREB-binding protein recruitment and autoregulation. J Biol Chem 273 5948-5954 1998.

  • Licht JD. AML1 and the AML1-ETO fusion protein in the pathogenesis of t(8;21) AML. Oncogene 20 5660-5679 2001.

  • Litterst CM Pfitzner E. An LxxLL motif in the transactivation domain of STAT6 mediates recruitment of NCoA-1/ SRC-1. J Biol Chem 277 36052-36060 2002.

  • Littlewood TD Evan GI. Transcription factors 2: helix-loop-helix. Protein Profile 1 635-709 1994.

  • Liu J Zhou B Yan M Huang R Wang Y He Z Yang Y Dai C Wang Y Zhang F Zhai Q. CLOCK and BMAL1 regulate muscle insulin sensitivity via SIRT1 in male mice. Endocrinology en20152027 2016. [Epub ahead of print]

  • Loinder K Soderstrom M. Functional analyses of an LXXLL motif in nuclear receptor corepressor (N-CoR). J Steroid Biochem Mol Biol 91 191-196 2004.

  • Ma X Xu L Wang S Cui B Li X Xu J Ning G. Deletion of steroid receptor coactivator-3 gene ameliorates hepatic steatosis. J Hepatol 55 445-452 2011.

  • Mackinnon JA Gallastegui N Osguthorpe DJ Hagler AT Estebanez-Perpina E. Allosteric mechanisms of nuclear receptors: insights from computational simulations. Mol Cell Endocrinol 393 75-82 2014.

  • Madak-Erdogan Z Katzenellenbogen BS. Aryl hydrocarbon receptor modulation of estrogen receptor α-mediated gene regulation by a multimeric chromatin complex involving the two receptors and the coregulator RIP140. Toxicol Sci 125 401-411 2012.

  • Mangelsdorf DJ Thummel C Beato M Herrlich P Schutz G Umesono K Blumberg B Kastner P Mark M Chambon P Evans RM. The nuclear receptor superfamily: the second decade. Cell 83 835-839 1995.

  • Mascrez B Ghyselinck NB Watanabe M Annicotte JS Chambon P Auwerx J Mark M. Ligand-dependent contribution of RXRbeta to cholesterol homeostasis in Sertoli cells. EMBO Rep 5 285-290 2004.

  • Matthews J Wihlen B Thomsen J Gustafsson JA. Aryl hydrocarbon receptor-mediated transcription: ligand-dependent recruitment of estrogen receptor alpha to 2378-tetrachlorodibenzo-p-dioxin-responsive promoters. Mol Cell Biol 25 5317-5328 2005.

  • Maywood ES Chesham JE Smyllie NJ Hastings MH. The Tau mutation of casein kinase 1ε sets the period of the mammalian pacemaker via regulation of Period1 or Period2 clock proteins. J Biol Rhyth 29 110-118 2014.

  • Metivier R Penot G Flouriot G Pakdel F. Synergism between ERalpha transactivation function 1 (AF-1) and AF-2 mediated by steroid receptor coactivator protein-1: requirement for the AF-1 alpha-helical core and for a direct interaction between the N- and C-terminal domains. Mol Endocrinol 15 1953-1970 2001.

  • Mimura J Fujii-Kuriyama Y. Functional role of AhR in the expression of toxic effects by TCDD. Biochim Biophys Acta 1619 263-268 2003.

  • Mita Y Dodo K Noguchi-Yachide T Miyachi H Makishima M Hashimoto Y Ishikawa M. LXXLL peptide mimetics as inhibitors of the interaction of vitamin D receptor with coactivators. Bioorg Med Chem Lett 20 1712-1717 2010.

  • Molnar F Matilainen M Carlberg C. Structural determinants of the agonist-independent association of human peroxisome proliferator-activated receptors with coactivators. J Biol Chem 280 26543-2656 2005.

  • Morishita Y Miura D Kida S. PI3K regulates BMAL1/CLOCK-mediated circadian transcription from the Dbp promoter. Biosci Biotechnol Biochem 80 1131-1140 2016.

  • Mouchon A Delmotte MH Formstecher P Lefebvre P. Allosteric regulation of the discriminative responsiveness of retinoic acid receptor to natural and synthetic ligands by retinoid X receptor and DNA. Mol Cell Biol 19 3073-3085 1999.

  • Murphy KA Quadro L White LA. The intersection between the aryl hydrocarbon receptor (AhR)- and retinoic acidsignaling pathways. Vitam Horm 75 33-67 2007.

  • Musille PM Pathak MC Lauer JL Hudson WH Griffin PR Ortlund EA. Antidiabetic phospholipid-nuclear receptor complex reveals the mechanism for phospholipid-driven gene regulation. Nat Struct Mol Biol 19 532-537 2012.

  • Nagy L Kao HY Love JD Li C Banayo E Gooch JT Krishna V Chatterjee K Evans RM Schwabe JW. Mechanism of corepressor binding and release from nuclear hormone receptors. Genes Dev 13 3209-3216 1999.

  • Nguyen TA Hoivik D Lee JE Safe S. Interactions of nuclear receptor coactivator/corepressor proteins with the aryl hydrocarbon receptor complex. Arch Biochem Biophys 367 250-257 1999.

  • Norman AW. Identification of a unique nuclear receptor for 9-cis retinoic acid. Nutr Rev 50 230-231 1992.

  • O’Malley BW. Coregulators: from whence came these ‘master genes’. Mol Endocrinol 21 1009-1013 2007.

  • Onate SA Tsai SY Tsai MJ O’Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270 1354-1357 1995.

  • Osborne CK Bardou V Hopp TA Chamness GC Hilsenbeck SG Fuqua SA Wong J Allred DC Clark GM Schiff R. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst 95 353-361 2003.

  • Osguthorpe DJ Hagler AT. Mechanism of androgen receptor antagonism by bicalutamide in the treatment of prostate cancer. Biochemistry 50 4105-4113 2011.

  • Osguthorpe DJ Sherman W Hagler AT. Generation of receptor structural ensembles for virtual screening using binding site shape analysis and clustering. Chem Biol Drug Des 80 182-193 2012.

  • Pappa KI Gazouli M Anastasiou E Iliodromiti Z Antsaklis A Anagnou NP. The major circadian pacemaker ARNT-like protein-1 (BMAL1) is associated with susceptibility to gestational diabetes mellitus. Diabetes Res Clin Pract 99 151-157 2013.

  • Paramanik V Thakur MK. AIB1 shows variation in interaction with ERβTAD and expression as a function of age in mouse brain. Biogerontology 12 321-328 2011.

  • Parker MG White R. Nuclear receptors spring into action. Nat Struct Biol 3 113-115 1996.

  • Percharde M Lavial F Ng JH Kumar V Tomaz RA Martin N Yeo JC Gil J Prabhakar S Ng HH Parker MG Azuara V. Ncoa3 functions as an essential Esrrb coactivator to sustain embryonic stem cell self-renewal and reprogramming. Genes Dev 26 2286-2298 2012.

  • Pogenberg V Guichou JF Vivat-Hannah V Kammerer S Perez E Germain P de Lera AR Gronemeyer H Royer CA Bourguet W. Characterization of the interaction between retinoic acid receptor/retinoid X receptor (RAR/ RXR) heterodimers and transcriptional coactivators through structural and fluorescence anisotropy studies. J Biol Chem 280 1625-1633 2005.

  • Ponting CP Aravind L. PAS: a multi-functional domain family comes to light. Curr Biol 7 R674-R677 1997.

  • Presman DM Alvarez LD Levi V Eduardo S Digman MA Marti MA Veleiro AS Burton G Pecci A. Insights on glucocorticoid receptor activity modulation through the binding of rigid steroids. PLoS One 5 e13279 2010.

  • Pugh BF. HATs off to PIC assembly. Molec Cell 23 776-777 2006.

  • Qin L Liu Z Chen H Xu J. The steroid receptor coactivator-1 regulates twist expression and promotes breast cancer metastasis. Cancer Res 69 3819-3827 2009.

  • Quong MW Romanow WJ Murre C. E protein function in lymphocyte development. Annu Rev Immunol 20 301-322 2002.

  • Rachez C Gamble M Chang CP Atkins GB Lazar MA Freedman LP. The DRIP complex and SRC-1/p160 coactivators share similar nuclear receptor binding determinants but constitute functionally distinct complexes. Mol Cell Biol 20 2718-2726 2000.

  • Radhakrishnan I Perez-Alvarado GC Parker D Dyson HJ Montminy MR Wright PE. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91 741-752 1997.

  • Razeto A Ramakrishnan V Litterst CM Giller K Griesinger C Carlomagno T Lakomek N Heimburg T Lodrini M Pfitzner E Becker S. Structure of the NCoA-1/SRC-1 PAS-B domain bound to the LXXLL motif of the STAT6 transactivation domain. J Mol Biol 336 319-329 2004.

  • Richards J Diaz AN Gumz ML. Clock genes in hypertension: novel insights from rodent models. Blood Pres Monitor 19 249-254 2014.

  • Rushing SR Denison MS. The silencing mediator of retinoic acid and thyroid hormone receptors can interact with the aryl hydrocarbon (Ah) receptor but fails to repress Ah receptor-dependent gene expression. Arch Biochem Biophys 403 189-201 2002.

  • Ruegg J Swedenborg E Wahlstrom D Escande A Balaguer P Pettersson K Pongratz I. The transcription factor aryl hydrocarbon receptor nuclear translocator functions as an estrogen receptor beta-selective coactivator and its recruitment to alternative pathways mediates antiestrogenic effects of dioxin. Mol Endocrinol 22 304-316 2008.

  • Sachs LM Shi YB. Targeted chromatin binding and histone acetylation in vivo by thyroid hormone receptor during amphibian development. Proc Natl Acad Sci USA 97 13138-13143 2000.

  • Sachs LM Amano T Rouse N Shi YB. Involvement of histone deacetylase at two distinct steps in gene regulation during intestinal development in Xenopus laevis. Dev Dyn 222 280-291 2001.

  • Sheppard HM Harries JC Hussain S Bevan C Heery DM. Analysis of the steroid receptor coactivator 1 (SRC1)- CREB binding protein interaction interface and its importance for the function of SRC1. Mol Cell Biol 21 39-50 2001.

  • Shibata H Spencer TE Onate SA Jenster G Tsai SY Tsai MJ O’Malley BW. Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action. Recent Prog Horm Res 52 141-64 1997.

  • Shiota M Yokomizo A Tada Y Inokuchi J Tatsugami K Kuroiwa K Uchiumi T Fujimoto N Seki N Naito S. Peroxisome proliferator-activated receptor γ coactivator-1α interacts with the androgen receptor (AR) and promotes prostate cancer cell growth by activating the AR. Mol Endocrinol 24 114-127 2009.

  • Son YL Lee YC. Molecular determinants of the interactions between SRC-1 and LXR/RXR heterodimers. FEBS Lett 584 3862-3866 2010.

  • Souza PC Barra GB Velasco LF Ribeiro IC Simeoni LA Togashi M Webb P Neves FA Skaf MS Martinez L Polikarpov I. Helix 12 dynamics and thyroid hormone receptor activity: experimental and molecular dynamics studies of Ile280 mutants. J Mol Biol 412 882-893 2011.

  • Spencer TE Jenster G Burcin MM Allis CD Zhou J Mizzen CA McKenna NJ Onate SA Tsai SY Tsai MJ O’Malley BW. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389 194-198 1997.

  • Stashi E Wang L Mani SK York B O’Malley BW. Research resource: loss of the steroid receptor coactivators confers neurobehavioral consequences. Mol Endocrinol 27 1776-1787 2013.

  • Stashi E York B O’Malley BW. Steroid receptor coactivators: servants and masters for control of systems metabolism. Trends Endocrinol Metab 25 337-347 2014.

  • Sterner DE Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64 435-459 2000.

  • Taylor BS Schultz N Hieronymus H Gopalan A Xiao Y Carver BS Arora VK Kaushik P Cerami E Reva B Antipin Y Mitsiades N Landers T Dolgalev I Major JE Wilson M Socci ND Lash AE Heguy A Eastham JA Scher HI Reuter VE Scardino PT Sander C Sawyers CL Gerald WL. Integrative genomic profiling of human prostate cancer. Cancer Cell 18 11-22 2010.

  • Torchia J Rose DW Inostroza J Kamei Y Westin S Glass CK Rosenfeld MG. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387 677-684 1997.

  • Tyteca S Legube G Trouche D. To die or not to die: a HAT trick. Mol Cell 24 807-808 2006.

  • Uhlenhaut NH Barish GD Yu RT Downes M Karunasiri M Liddle C Schwalie P Hubner N Evans RM. Insights into negative regulation by the glucocorticoid receptor from genome-wide profiling of inflammatory cistromes. Mol Cell 49 158-171 2013.

  • Utley RT Ikeda K Grant PA Cote J Steger DJ Eberharter A John S Workman JL. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394 498-502 1998.

  • van de Wijngaart DJ van Royen ME Hersmus R Pike AC Houtsmuller AB Jenster G Trapman J Dubbink HJ. Novel FXXFF and FXXMF motifs in androgen receptor cofactors mediate high affinity and specific interactions with the ligand-binding domain. J Biol Chem 281 19407-19416 2006.

  • van de Wijngaart DJ Dubbink HJ van Royen ME Trapman J Jenster G. Androgen receptor coregulators: recruitment via the coactivator binding groove. Mol Cell Endocrinol 352 57-69 2012.

  • Vo N Goodman RH. CREB-binding protein and p300 in transcriptional regulation. J Biol Chem 276 13505-13508 2001.

  • Walfish PG Yoganathan T Yang YF Hong H Butt TR Stallcup MR. Yeast hormone response element assays detect and characterize GRIP1 coactivator-dependent activation of transcription by thyroid and retinoid nuclear receptors. Proc Natl Acad Sci USA 94 3697-3702 1997.

  • Walsh CA Qin L Tien JC Young LS Xu J. The function of steroid receptor coactivator-1 in normal tissues and cancer. Int J Biol Sci 8 470-485 2012.

  • Wang Y. Downregulation of liver X receptor in mouse kidney and HK-2 proximal tubular cells by LPS and cytokines. J Lipid Res 46 2377-2387 2005.

  • Wang Z Burke PA. Modulation of hepatocyte nuclear factor-4alpha function by the peroxisome-proliferator-activated receptor-gamma co-activator-1alpha in the acute-phase response. Biochem J 415 289-296 2008.

  • Wang Y Kumar N Crumbley C Griffin PR Burris TP. A second class of nuclear receptors for oxysterols: Regulation of RORalpha and RORgamma activity by 24S-hydroxycholesterol (cerebrosterol). Biochim Biophys Acta 1801 917-923 2010.

  • Wang Y Lonard DM Yu Y Chow DC Palzkill TG O’Malley BW. Small molecule inhibition of the steroid receptor coactivators SRC-3 and SRC-1. Molec Endocrinol 25 2041-2053 2011.

  • Wang Z Wu Y Li L Su XD. Intermolecular recognition revealed by the complex structure of human CLOCKBMAL1 basic helix-loop-helix domains with E-box DNA”. Cell Res 23 213-224 2013.

  • Wang Y Lonard DM Yu Y Chow DC Palzkill TG Wang J Qi R Matzuk AJ Song X Madoux F Hodder P Chase P Griffin PR Zhou S Liao L Xu J O’Malley BW. Bufalin is a potent small-molecule inhibitor of the steroid receptor coactivators SRC-3 and SRC-1. Cancer Res 74 1506-1517 2014.

  • Weber D Wiese C Gessler M. Hey bHLH transcription factors. Curr Top Dev Biol 110 285-315 2014.

  • Widerak M Ghoneim C Dumontier MF Quesne M Corvol MT Savouret JF. The aryl hydrocarbon receptor activates the retinoic acid receptor alpha through SMRT antagonism. Biochimie 88 387-397 2006.

  • Wolf G. Cellular retinoic acid-binding protein II: a coactivator of the transactivation by the retinoic acid receptor complex RAR.RXR. Nutr Rev 58 151-153 2000.

  • Wu JH Gottlieb B Batist G Sulea T Purisima EO Beitel LK Trifiro M. Bridging structural biology and genetics by computational methods: an investigation into how the R774C mutation in the AR gene can result in complete androgen insensitivity syndrome. Hum Mutat 22 465-475 2003.

  • Wu RC Qin J Yi P Wong J Tsai SY Tsai MJ O’Malley BW. Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic reponses to multiple cellular signaling pathways. Mol Cell 24 937-949 2004.

  • Wu RC Feng Q Lonard DM O’Malley BW. SRC-3 coactivator functional lifetime is regulated by a phospho-dependent ubiquitin time clock. Cell 129 1125-1140 2007.

  • Wurtz JM Bourguet W Renaud JP Vivat V Chambon P Moras D Gronemeyer H. A canonical structure for the ligand-binding domain of nuclear receptors. Nat Struct Biol 3 206 1996.

  • Xiong W Li J Zhang E Huang H. BMAL1 regulates transcription initiation and activates circadian clock gene expression in mammals. Biochem Biophys Res Commun 473 1019-1025 2016.

  • Xu J Liao L Ning G Yoshida-Komiya H Deng C O‘Malley BW. The steroid receptor coactivator SRC-3 (p/CIP/ RAC3/ AIB1/ACTR/TRAM-1) is required for normal growth puberty female reproductive function and mammary gland development. Proc Natl Acad Sci USA 97 6379-6384 2000.

  • Xu J Li Q. Review of the in vivo functions of the p160 steroid receptor coactivator family. Mol Endocrinol 17 1681-1692 2003.

  • Xu J Wu RC O’Malley BW. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nature Rev Cancer 9 615-630 2009.

  • Xu X Yang W Wang X Li Y Wang Y Ai C. Dynamic communication between androgen and coactivator: mutually induced conformational perturbations in androgen receptor ligand-binding domain. Proteins 79 1154-1171 2011.

  • Yamamoto KR. Steroid receptor regulated transcription of specific genes and gene networks. Annu Rev Genet 19 209-215 1985.

  • Yan F Yu Y Chow DC Palzkill T Madoux F Hodder P Chase P Griffin PR O’Malley BW Lonard DM. Identification of verrucarin a as a potent and selective steroid receptor coactivator-3 small molecule inhibitor. PLoS One 9 e95243 2014.

  • York B O’Malley BW. Steroid receptor coactivator (SRC) family: masters of systems biology. J Biol Chem 285 38743-38750 2010.

  • Zakharov MN Pillai BK Bhasin S Ulloor J Istomin AY Guo C Godzik A Kumar R Jasuja R. Dynamics of coregulator- induced conformational perturbations in androgen receptor ligand binding domain. Mol Cell Endocrinol 341 1-8 2011.

  • Zelenko Z Aghajanova L Irwin JC Giudice LC. Nuclear receptor coregulator signaling and chromatin remodeling pathways suggest involvement of the epigenome in the steroid hormone response of endometrium and abnormalities in endometriosis. Reprod Sci 19 152-162 2012.

  • Zhang J Kalkum M Yamamura S Chait BT Roeder RG. E protein silencing by the leukemogenic AML1-ETO fusion protein. Science 305 1286-1289 2004.

  • Zhou G Cummings R Li Y Mitra S Wilkinson HA Elbrecht A Hermes JD Schaeffer JM Smith RG Moller DE. Nuclear receptors have distinct affinities for coactivators: characterization by fluorescence resonance energy transfer. Mol Endocrinol 12 1594-604 1998.

  • Zhu B Gates LA Stashi E Dasgupta S Gonzales N Dean A Dacso CC York B O’Malley BW. Coactivator-Dependent Oscillation of Chromatin Accessibility Dictates Circadian Gene Amplitude via REV-ERB Loading. Mol Cell 60 769-783 2015.

  • Zor T De Guzman RN Dyson HJ Wright PE. Solution structure of the KIX domain of CBP bound to the transactivation domain of c-Myb. J Mol Biol 337 521-534 2004.

Search
Journal information
Impact Factor


CiteScore 2018: 1.27

SCImago Journal Rank (SJR) 2018: 0.411
Source Normalized Impact per Paper (SNIP) 2018: 0.441

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 514 337 8
PDF Downloads 238 163 9