Progress in micro RNA focused research in endocrinology

Abstract

Micro RNAs (miRNAs) are small regulatory molecules of increasing biologists’ interest. miRNAs, unlikely mRNA, do not encode proteins. It is a class of small double stranded RNA molecules that via their seed sequence interact with mRNA and inhibit its expression. It has been estimated that 30% of human gene expression is regulated by miRNAs. One miRNA usually targets several mRNAs and one mRNA can be regulated by several miRNAs. miRNA biogenesis is realized by key enzymes, Drosha and Dicer. miRNA/mRNA interaction depends on binding to RNA-induced silencing complex. Today, complete commercially available methodical proposals for miRNA investigation are available. There are techniques allowing the identification of new miRNAs and new miRNA targets, validation of predicted targets, measurement of miRNAs and their precursor levels, and validation of physiological role of miRNAs under in vitro and in vivo conditions. miRNAs have been shown to influence gene expression in several endocrine glands, including pancreas, ovary, testes, hypothalamus, and pituitary.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Baccarini A, Chauhan H, Gardner TJ, Jayaprakash AD, Sachidanandam R, Brown BD. Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells. Curr Biol 21, 369-376, 2011. http://dx.doi.org/10.1016/j.cub.2011.01.067

  • Balcells I, Cirera S, Busk PK. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol 11, 70, 2011. http://dx.doi.org/10.1186/1472-6750-11-70

  • Balakrishnan A, Stearns AT, Park PJ, Dreyfuss JM, Ashley SW, Rhoads DB, Tavakkolizadeh A. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts. Exp Cell Res 316, 3512-3521, 2010. http://dx.doi.org/10.1016/j.yexcr.2010.07.007

  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233, 2009. http://dx.doi.org/10.1016/j.cell.2009.01.002

  • Benes V, Castoldi M. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 50, 244-249, 2010. http://dx.doi.org/10.1016/j.ymeth.2010.01.026

  • Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC. Mammalian mirtron genes. Mol Cell 28, 328-336, 2007. http://dx.doi.org/10.1016/j.molcel.2007.09.028

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363-366, 2001. http://dx.doi.org/10.1038/35053110

  • Burgos KL, Javaherian A, Bomprezzi R, Ghaffari L, Rhodes S, Courtright A, Tembe W, Kim S, Metpally R, Van Keuren-Jensen K. Identification of extracellular miRNA in human cerebrospinal fluid by next-generation sequencing. RNA 19, 712-722, 2013. http://dx.doi.org/10.1261/rna.036863.112

  • Calado A, Treichel N, Muller EC, Otto A, Kutay U. Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA. EMBO J 21, 6216-6224, 2002. http://dx.doi.org/10.1093/emboj/cdf620

  • Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40, 43-50, 2008. http://dx.doi.org/10.1038/ng.2007.30

  • Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584-589, 2010. http://dx.doi.org/10.1038/nature09092

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33, e179, 2005. http://dx.doi.org/10.1093/nar/gni178

  • Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18, 997-1006, 2008. http://dx.doi.org/10.1038/cr.2008.282

  • Cheng HY, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T, Shimizu K, Okamura H, Impey S, Obrietan K. MicroRNA modulation of circadian-clock period and entrainment. Neuron 54, 813-829, 2007. http://dx.doi.org/10.1016/j.neuron.2007.05.017

  • Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740-744, 2005. http://dx.doi.org/10.1038/nature03868

  • Choi JW, Kang SM, Lee Y, Hong SH, Sanek NA, Young WS, Lee HJ. MicroRNA profiling in the mouse hypothalamus reveals oxytocin-regulating microRNA. J Neurochem 126, 331-337, 2013. http://dx.doi.org/10.1111/jnc.12308

  • Corcoran DL, Pandit KV, Gordon B, Bhattacharjee A, Kaminski N, Benos PV. Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One 4, e5279, 2009. http://dx.doi.org/10.1371/journal.pone.0005279

  • Correa-Medina M, Bravo-Egana V, Rosero S, Ricordi C, Edlund H, Diez J, Pastori RL. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr Patterns 9, 193-199, 2009. http://dx.doi.org/10.1016/j.gep.2008.12.003

  • da Costa Martins PA, Bourajjaj M, Gladka M, Kortland M, van Oort RJ, Pinto YM, Molkentin JD, De Windt LJ. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation 118, 1567-1576, 2008. http://dx.doi.org/10.1161/CIRCULATIONAHA.108.769984

  • Dai A, Sun H, Fang T, Zhang Q, Wu S, Jiang Y, Ding L, Yan G, Hu Y. MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2. FEBS Lett 587, 2474−2482, 2013. http://dx.doi.org/10.1016/j.febslet.2013.06.023

  • Davis TH, Cuellar TL, Koch SM, Barker AJ, Harfe BD, McManus MT, Ullian EM. Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci 28, 4322-4330, 2008a. http://dx.doi.org/10.1523/JNEUROSCI.4815-07.2008

  • Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454, 56-61, 2008b. http://dx.doi.org/10.1038/nature07086

  • Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231-235, 2004. http://dx.doi.org/10.1038/nature03049

  • Diederichs S, Haber DA. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131, 1097-1108, 2007. http://dx.doi.org/10.1016/j.cell.2007.10.032

  • Dogini DB, Pascoal VD, Avansini SH, Vieira AS, Pereira TC, Lopes-Cendes I. Th e new world of RNAs. Genet Mol Biol 37, 285-293, 2014. http://dx.doi.org/10.1590/S1415-47572014000200014

  • Ebert MS, Sharp PA. MicroRNA sponges: progress and possibilities. RNA 16, 2043−2050, 2010. http://dx.doi.org/10.1261/rna.2414110

  • Elia L, Quintavalle M, Zhang J, Contu R, Cossu L, Latronico MV, Peterson KL, Indolfi C, Catalucci D, Chen J, Courtneidge SA, Condorelli G. The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Diff er 16, 1590-1598, 2009. http://dx.doi.org/10.1038/cdd.2009.153

  • Eskildsen TV, Jeppesen PL, Schneider M, Nossent AY, Sandberg MB, Hansen PB, Jensen CH, Hansen ML, Marcussen N, Rasmussen LM, Bie P, Andersen DC, Sheikh SP. Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans. Int J Mol Sci 14, 11190−11207, 2013. http://dx.doi.org/10.3390/ijms140611190

  • Feng Y, Zhang X, Song Q, Li T, Zeng Y. Drosha processing controls the specificity and efficiency of global microRNA expression. Biochem Biophys Acta 1809, 700-707, 2011. http://dx.doi.org/10.1016/j.bbagrm.2011.05.015

  • Figueredo Dde S, Gitai DL, Andrade TG. Daily variations in the expression of miR-16 and miR-181a in human leukocytes. Blood Cells Mol Dis 54, 364−368, 2015. http://dx.doi.org/10.1016/j.bcmd.2015.01.004

  • Filipowicz W. RNAi: the nuts and bolts of the RISC machine. Cell 122, 17-20, 2005. http://dx.doi.org/10.1016/j.cell.2005.06.023

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans. Nature 391, 806-811, 1998. http://dx.doi.org/10.1038/35888

  • Forman JJ, Legesse-Miller A, Coller HA. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A 105, 14879−14884, 2008. http://dx.doi.org/10.1073/pnas.0803230105

  • Frezzetti D, Reale C, Cali G, Nitsch L, Fagman H, Nilsson O, Scarfo M, De Vita G, Di Lauro R. Th e microRNA-processing enzyme Dicer is essential for thyroid function. PLoS One 6, e27648, 2011. http://dx.doi.org/10.1371/journal.pone.0027648

  • Fukuda T, Yamagata K, Fujiyama S, Matsumoto T, Koshida I, Yoshimura K, Mihara M, Naitou M, Endoh H, Nakamura T, Akimoto C, Yamamoto Y, Katagiri T, Foulds C, Takezawa S, Kitagawa H, Takeyama K, O’Malley BW, Kato S. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 9, 604-611, 2007. http://dx.doi.org/10.1038/ncb1577

  • Gaken J, Mohamedali AM, Jiang J, Malik F, Stangl D, Smith AE, Chronis C, Kulasekararaj AG, Thomas NS, Farzaneh F, Tavassoli M, Muft i GJ. A functional assay for microRNA target identification and validation. Nucleic Acids Res 40, e75, 2012. http://dx.doi.org/10.1093/nar/gks145

  • Georgi SA, Reh TA. Dicer is required for the transition from early to late progenitor state in the developing mouse retina. J. Neurosci 30, 4048-4061, 2010. http://dx.doi.org/10.1523/JNEUROSCI.4982-09.2010

  • Godoy J, Nishimura M, Webster NJ. Gonadotropin-releasing hormone induces miR-132 and miR-212 to regulate cellular morphology and migration in immortalized LbetaT2 pituitary gonadotrope cells. Mol Endocrinol 25, 810−820, 2011. http://dx.doi.org/10.1210/me.2010-0352

  • Gregory RI, LaTP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631−640, 2005. http://dx.doi.org/10.1016/j.cell.2005.10.022

  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research 34, Database issue 140-4, 2006. http://dx.doi.org/10.1093/nar/gkj112

  • Gu S, Jin L, Zhang F, Huang Y, Grimm D, Rossi JJ, Kay MA. Th ermodynamic stability of small hairpin RNAs highly influences the loading process of different mammalian Argonautes. Proc Natl Acad Sci U S A 108, 9208-9213, 2011. http://dx.doi.org/10.1073/pnas.1018023108

  • Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887-901, 2006. http://dx.doi.org/10.1016/j.cell.2006.03.043

  • Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ. Th e RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci U S A 102, 10898-10903, 2005. http://dx.doi.org/10.1073/pnas.0504834102

  • Hassan MQ, Gordon JA, Lian JB, van Wijnen AJ, Stein JL, Stein GS. Ribonucleoprotein immunoprecipitation (RNP-IP): a direct in vivo analysis of microRNA-targets. J Cell Biochem 110, 817-822, 2010. http://dx.doi.org/10.1002/jcb.22562

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM. A microRNA polycistron as a potential human oncogene. Nature 435, 828-833, 2005. http://dx.doi.org/10.1038/nature03552

  • He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ. A microRNA component of the p53 tumour suppressor network. Nature 447, 1130-1134, 2007. http://dx.doi.org/10.1038/nature05939

  • Heo I, Joo C, Cho J, Ha M, Han J, Kim VN. Lin28 mediates the terminal uridylation of let-7 precursor Micro- RNA. Molecular Cell 32, 276-284, 2008. http://dx.doi.org/10.1016/j.molcel.2008.09.014

  • Holley CL, Topkara VK. An introduction to small non-coding RNAs: miRNA and snoRNA. Cardiovasc Drugs Th er 25, 151-159, 2011. http://dx.doi:10.1007/s10557-011-6290-z

  • Hock J, Meister G. The Argonaute protein family. Genome Biol 9, 210, 2008. http://dx.doi.org/10.1186/gb-2008-9-2-210

  • Hrustincova A, Votavova H, Dostalova Merkerova M. Circulating MicroRNAs: Methodological Aspects in Detection of Th ese Biomarkers.Folia Biologica (Praha) 61, 203−218, 2015.

  • Hu HY, Yan Z, Xu Y, Hu H, Menzel C, Zhou YH, Chen W, Khaitovich P. Sequence features associated with microRNA strand selection in humans and fl ies. BMC Genomics 10, 413, 2009. http://dx.doi.org/10.1186/1471-2164-10-413

  • Hu Z, Shen WJ, Cortez Y, Tang X, Liu LF, Kraemer FB, Azhar S. Hormonal regulation of microRNA expression in steroid producing cells of the ovary, testis and adrenal gland. PLoS One 8, e78040, 2013. http://dx.doi.org/10.1371/journal.pone.0078040

  • Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056-2060, 2002. http://dx.doi.org/10.1126/science.1073827

  • Imbar T, Eisenberg I. Regulatory role of microRNAs in ovarian function. Fertil Steril 101, 1524−1530, 2014. http://dx.doi.org/10.1016/j.fertnstert.2014.04.024

  • Kawai S, Amano A. BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex. J Cell Biol 197, 201-208, 2012. http://dx.doi.org/10.1083/jcb.201110008

  • Kentwell J, Gundara JS, Sidhu SB. Noncoding RNAs in endocrine malignancy. Oncologist 19, 483−491, 2014. http://dx.doi: 10.1634/theoncologist.2013-0458

  • Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6, 376-385, 2005. http://dx.doi.org/10.1038/nrm1644

  • Krol J, Sobczak K, Wilczynska U, Drath M, Jasinska A, Kaczynska D, Krzyzosiak WJ. Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design. J Biol Chem 279, 42230-42239, 2004. http://dx.doi.org/10.1074/jbc.M404931200

  • Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res 101, 59-68, 2007. http://dx.doi.org/10.1161/CIRCRESAHA.107.153916

  • Kuhn DE, Martin MM, Feldman DS, Terry AV Jr, Nuovo GJ, Elton TS. Experimental validation of miRNA targets. Methods 44, 47−54, 2008. http://dx.doi.org/10.1016/j.ymeth.2007.09.005

  • Lal A, Th omas MP, Altschuler G, Navarro F, O’Day E, Li XL, Concepcion C, Han YC, Thiery J, Rajani DK, Deutsch A, Hofmann O, Ventura A, Hide W, Lieberman J. Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling. PLoS Genet 7, e1002363, 2011. http://dx.doi.org/10.1371/journal.pgen.1002363

  • Landthaler M, Yalcin A, Tuschl T. Th e human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14, 2162-2167, 2004. http://dx.doi.org/10.1016/j.cub.2004.11.001

  • Lannes J, L’Hote D, Garrel G, Laverriere JN, Cohen-Tannoudji J, Querat B. Rapid communication: A microRNA-132/212 pathway mediates GnRH activation of FSH expression. Mol Endocrinol 29, 364−372, 2015. http://dx.doi.org/10.1210/me.2014-1390

  • Lee RC, Feinbaum RL, Ambros V. Th e C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854, 1993. http://dx.doi.org/10.1016/0092-8674(93)90529-Y

  • Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21, 4663-4670, 2002. http://dx.doi.org/10.1093/emboj/cdf476

  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419, 2003. http://dx.doi.org/10.1038/nature01957

  • Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23, 4051-4060, 2004a. http://dx.doi.org/10.1038/sj.emboj.7600385

  • Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69-81, 2004b. http://dx.doi.org/10.1016/S0092-8674(04)00261-2

  • Lee EJ, Baek M, Gusev Y, Brackett DJ, Nuovo GJ, Schmittgen TD. Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA 14, 35-42, 2008. http://dx.doi.org/10.1261/rna.804508

  • Lee KH, Kim SH, Lee HR, Kim W, Kim DY, Shin JC, Yoo SH, Kim KT. MicroRNA-185 oscillation controls circadian amplitude of mouse Cryptochrome 1 via translational regulation. Mol Biol Cell 24, 2248-2255, 2013. http://dx.doi.org/10.1091/mbc.E12-12-0849

  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, oft en flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20, 2005. http://dx.doi.org/10.1016/j.cell.2004.12.035

  • Li X, Carthew RW. A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 123, 1267-1277, 2005. http://dx.doi.org/10.1016/j.cell.2005.10.040

  • Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6, 1258−1266, 1999. http://dx.doi.org/10.1038/sj.gt.3300947

  • Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22, 3242-3254, 2008. http://dx.doi.org/10.1101/gad.1738708

  • Ma W, Hu S, Yao G, Xie S, Ni M, Liu Q, Gao X, Zhang J, Huang X, Zhang Y. An androgen receptor-microrna-29a regulatory circuitry in mouse epididymis. J Biol Chem 288, 29369−29381, 2013. http://dx.doi.org/10.1074/jbc.M113.454066

  • MacRae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, Doudna JA. Structural basis for doublestranded RNA processing by Dicer. Science 311, 195-198, 2006. http://dx.doi.org/10.1126/science.1121638

  • Matera AG, Terns RM, Terns MP. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 8, 209-220, 2007. http://dx.doi.org/10.1038/nrm2124

  • Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607-620, 2005. http://dx.doi.org/10.1016/j.cell.2005.08.044

  • Melo SA, Ropero S, Moutinho C, Aaltonen LA, Yamamoto H, Calin GA, Rossi S, Fernandez AF, Carneiro F, Oliveira C, Ferreira B, Liu CG, Villanueva A, Capella G, Schwartz S Jr, Shiekhattar R, Esteller M. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet 41, 365−370, 2009. http://dx.doi.org/10.1038/ng.317

  • Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105, 10513-10518, 2008. http://dx.doi.org/10.1073/pnas.0804549105

  • Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama S, Kato Y, Takemoto F, Nakasa T, Yamashita S, Takada S, Lotz MK, Ueno-Kudo H, Asahara H. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev 24, 1173−1185, 2010. http://dx.doi.org/10.1101/gad.1915510

  • Monteys AM, Spengler RM, Wan J, Tecedor L, Lennox KA, Xing Y, Davidson BL. Structure and activity of putative intronic miRNA promoters. RNA 16, 495-505, 2010. http://dx.doi.org/10.1261/rna.1731910

  • Morita S, Horii T, Kimura M, Goto Y, Ochiya T, Hatada I. One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics 89, 687-696, 2007. http://dx.doi.org/10.1016/j.ygeno.2007.01.004

  • Mornet E, Dupont J, Vitek A, White PC. Characterization of two genes encoding human steroid 11 beta-hydroxylase (P-450(11) beta). J Biol Chem 264, 20961−20967, 1989.

  • Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM, Hannon GJ. Critical roles for Dicer in the female germline. Genes Dev 21, 682-693, 2007. http://dx.doi.org/10.1101/gad.1521307

  • Nagel R, Clijsters L, Agami R. The miRNA-192/194 cluster regulates the Period gene family and the circadian clock. FEBS J 276, 5447-5455, 2009. http://dx.doi.org/10.1111/j.1742-4658.2009.07229.x

  • Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1, 155-161, 2004. http://dx.doi.org/10.1038/nmeth717

  • Nemoto T, Mano A, Shibasaki T. Increased expression of miR-325-3p by urocortin 2 and its involvement in stressinduced suppression of LH secretion in rat pituitary. Am J Physiol Endocrinol Metab 302, E781−E787, 2012. http://dx.doi.org/10.1152/ajpendo.00616.2011

  • Newman MA, Thomson, JM, Hammond SM. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14, 1539-1549, 2008. http://dx.doi.org/10.1261/rna.1155108

  • Noland CL, Doudna JA. Multiple sensors ensure guide strand selection in human RNAi pathways. RNA 19, 639-648, 2013. http://dx.doi.org/10.1261/rna.037424.112

  • Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130, 89-100, 2007. http://dx.doi.org/10.1016/j.cell.2007.06.028

  • Ozcan S. Minireview: microRNA function in pancreatic β cells. Mol Endocrinol 28, 1922−1933, 2014. http://dx.doi.org/10.1210/me.2014-1306

  • Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG, Zhang X, Song JS, Fisher DE. Chromatin structure analyses identify miRNA promoters. Genes Dev 22, 3172-3183, 2008. http://dx.doi.org/10.1101/gad.1706508

  • Pare JM, Tahbaz N, Lopez-Orozco J, LaPointe P, Lasko P, Hobman TC. Hsp90 regulates the function of argonaute 2 and its recruitment to stress granule and P-bodies. Mol Biol Cell 20, 3273-3284, 2009. http://dx.doi.org/10.1091/mbc.E09-01-0082

  • Park CY, Choi YS, McManus MT. Analysis of microRNA knockouts in mice. Hum Mol Genet 19, 169−75, 2010. http://dx.doi.org/10.1093/hmg/ddq367

  • Parker R, Sheth U. P bodies and the control of mRNA translation and degradation. Mol Cell 25, 635−646, 2007. http://dx.doi.org/10.1016/j.molcel.2007.02.011

  • Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 281, 26932−26942, 2006. http://dx.doi.org/10.1074/jbc.M601225200

  • Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226−230, 2004. http://dx.doi.org/10.1038/nature03076

  • Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P, Zavolan M, Stoffel M. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci USA 106, 5813-5818, 2009. http://dx.doi.org/10.1073/pnas.0810550106

  • Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26, 731-734, 2007. http://dx.doi.org/10.1016/j.molcel.2007.05.017

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. Th e 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901-906, 2000. http://dx.doi.org/10.1038/35002607

  • Riester A, Issler O, Spyroglou A, Rodrig SH, Chen A, Beuschlein F. ACTH-dependent regulation of microRNA as endogenous modulators of glucocorticoid receptor expression in the adrenal gland. Endocrinology 153, 212−222, 2012. http://dx.doi.org/10.1210/en.2011-1285

  • Robertson S, MacKenzie SM, Alvarez-Madrazo S, Diver LA, Lin J, Stewart PM, Fraser R, Connell JM, Davies E. MicroRNA-24 is a novel regulator of aldosterone and cortisol production in the human adrenal cortex. Hypertension 62, 572−578, 2013. http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.01102

  • Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res 14, 1902-1910, 2004. http://dx.doi.org/10.1101/gr.2722704

  • Romero DG, Plonczynski MW, Carvajal CA, Gomez-Sanchez EP, Gomez-Sanchez CE. Microribonucleic acid-21 increases aldosterone secretion and proliferation in H295R human adrenocortical cells. Endocrinology 149, 2477−2483, 2008. http://dx.doi.org/10.1210/en.2007-1686

  • Shende VR, Goldrick MM, Ramani S, Earnest DJ. Expression and Rhythmic Modulation of Circulating MicroRNAs Targeting the Clock Gene Bmal1 in Mice. PLoS One 6, e22586, 2011. http://dx.doi.org/10.1371/journal.pone.0022586

  • Shi R, Chiang VL. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39, 519−525, 2005. http://dx.doi.org/10.2144/000112010

  • Schmittgen TD, Jiang J, Liu Q, Yang L. A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res 32, e43, 2004. http://dx.doi.org/10.1093/nar/gnh040

  • Schmittgen TD, Lee EJ, Jiang J, Sarkar A, Yang L, Elton TS, Chen C. Real-time of PCR quantification precursor and mature microRNA. Methods 44, 31-38, 2008. http://dx.doi.org/10.1016/j.ymeth.2007.09.006

  • Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199-208, 2003. http://dx.doi.org/10.1016/S0092-8674(03)00759-1

  • Suh N, Baehner L, Moltzahn F, Melton C, Shenoy A, Chen J, Blelloch R. MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr Biol 20, 271-277, 2010. http://dx.doi.org/10.1016/j.cub.2009.12.044

  • Tang R, Li L, Zhu D, Hou D, Cao T, Gu H, Zhang J, Chen J, Zhang CY, Zen K. Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res 3, 504-515, 2012. http://dx.doi.org/10.1038/cr.2011.137

  • Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20, 2202-2207, 2006. http://dx.doi.org/10.1101/gad.1444406

  • Timmermans S, Van Hauwermeiren F, Puimege L, Dejager L, Van Wonterghem E, Vanhooren V, Mestdagh P, Libert C, Vandenbroucke RE. Determining differentially expressed miRNAs and validating miRNA−target relationships using the SPRET/Ei mouse strain. Mamm Genome 26, 94−107, 2015. http://dx.doi.org/10.1007/s00335-014-9550-y

  • Van Nieuwerburgh F, Soetaert S, Podshivalova K, Ay-Lin Wang E, Schaff er L, Deforce D, Salomon DR, Head SR, Ordoukhanian P. Quantitative bias in Illumina TruSeq and a novel post amplification barcoding strategy for multiplexed DNA and small RNA deep sequencing. PLoS One 6, e26969, 2011. http://dx.doi.org/10.1371/journal.pone.0026969

  • van Rooij E. Th e art of microRNA research. Circ Res 108, 219−234, 2011. http://dx.doi.org/10.1161/CIRCRESAHA.110.227496

  • Vasudevan S. Functional validation of microRNA-target RNA interactions. Methods 58, 126−134, 2012. http://dx.doi.org/10.1016/j.ymeth.2012.08.002

  • Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR, Jaenisch R, Sharp PA, Jacks T. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132, 875-886, 2008. http://dx.doi.org/10.1016/j.cell.2008.02.019

  • Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39, 380-385, 2007. http://dx.doi.org/10.1038/ng1969

  • Wang D, Zhang Z, O’Loughlin E, Lee T, Houel S, O’Carroll D, Tarakhovsky A, Ahn NG, Yi R. Quantitative functions of Argonaute proteins in mammalian development. Genes Dev 26, 693-704, 2012. http://dx.doi.org/10.1101/gad.182758.111

  • Wang L, Xu C. Role of microRNAs in mammalian spermatogenesis and testicular germ cell tumors. Reproduction 149, R127-137, 2015. http://dx.doi.org/10.1530/REP-14-0239

  • Wickramasinghe NS, Manavalan TT, Dougherty SM, Riggs KA, Li Y, Klinge CM. Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancercells. Nucleic Acids Res 37, 2584−2595, 2009. http://dx.doi.org/10.1093/nar/gkp117

  • Wu Q, Song R, Ortogero N, Zheng H, Evanoff R, Small CL, Griswold MD, Namekawa SH, Royo H, Turner JM, Yan W. Th e RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis. J Biol Chem 287, 25173-25190, 2012. http://dx.doi.org/10.1074/jbc.M112.362053

  • Wu S, Sun H, Zhang Q, Jiang Y, Fang T, Cui I, Yan G, Hu Y. MicroRNA-132 promotes estradiol synthesis in ovarian granulosa cells via translational repression of Nurr1. Reprod Biol Endocrinol 13, 94, 2015. http://dx.doi.org/10.1186/s12958-015-0095-z

  • Xu S, Witmer PD, Lumayag S, Kovacs B, Valle D. MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem 282, 25053−25066, 2007. http://dx.doi.org/10.1074/jbc.M700501200

  • Yan Y, Salazar TE, Dominguez JM 2nd, Nguyen DV, Li Calzi S, Bhatwadekar AD, Qi X, Busik JV, Boulton ME, Grant MB. Dicer expression exhibits a tissue-specifi c diurnal pattern that is lost during aging and in diabetes. PLoS One 8, e80029, 2013. http://dx.doi.org/10.1371/journal.pone.0080029

  • Yang WJ, Yang D, Na S, Sandusky G, Zhang Q, Zhao G. Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem 280, 9330-9335, 2004. http://dx.doi.org/10.1074/jbc.M413394200

  • Yang M, Lee JE, Padgett RW, Edery I. Circadian regulation of a limited set of conserved microRNAs in Drosophila. BMC Genomics 9, 83, 2008. http://dx.doi.org/10.1186/1471-2164-9-83

  • Yang Y, Chang S, Zhao Z, Hou NI, He K, Wang X, Gao L, Wang L, Cai D, Guo BO, Tong D, Song T, Huang C. MicroRNA-214 suppresses the proliferation of human hepatocellular carcinoma cells by targeting E2F3. Oncol Lett 10, 3779-3784, 2015. http://dx.doi.org/10.3892/ol.2015.3745

  • Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17, 3011-3016, 2003. http://dx.doi.org/10.1101/gad.1158803

  • Yin M, Lu M, Yao G, Tian H, Lian J, Liu L, Liang M, Wang Y, Sun F. Transactivation of microRNA-383 by steroidogenic factor-1 promotes estradiol release from mouse ovariangranulosa cells by targeting RBMS1. Mol Endocrinol 26, 1129−1143, 2012. http://dx.doi.org/10.1210/me.2011-1341

  • Zhang X, Zeng Y. Regulation of mammalian microRNA expression. J Cardiovasc Transl Res 3, 197-203, 2010. http://dx.doi.org/10.1007/s12265-010-9166-x

  • Zhang Z, Qin YW, Brewer G, Jing Q. MicroRNA degradation and turnover: regulating the regulators. Wiley Interdiscip Rev RNA 3, 593-600, 2012. http://dx.doi.org/10.1002/wrna.1114

  • Zhang N, Lin JK, Chen J, Liu XF, Liu JL, Luo HS, Li YQ, Cui S. MicroRNA 375 mediates the signaling pathway of corticotropin-releasing factor (CRF) regulating pro-opiomelanocortin (POMC) expression by targeting mitogen-activated protein kinase 8. J Biol Chem 288, 10361-10373, 2013. http://dx.doi.org/10.1074/jbc.M112.425504

OPEN ACCESS

Journal + Issues

Search