The models evaluating courier and messenger companies in Poland

Open access

Abstract

Data Envelopment Analysis (DEA) is a well-established, popular, and often used method for efficiency evaluation of units from all sector, both commercial and non-profit organisations, of any scale of operations. Network DEA models are a relatively recent approach used to examine the efficiency of decision-making units (DMUs) having an internal structure of sub-processes. The article presents the concept of DEA network models in estimating the efficiency of courier and messenger companies with relations to their business clients. The considerations are supported by an example of data concerning leaders from the sector of couriers and messengers in Poland and one of the biggest and most popular online stores. The results are compared with the traditional DEA approach. In addition, to measure reliability for DEA scores, the jackknife procedure was performed. The author proves the usefulness of network DEA as a research and management tool.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Chen C. & Yan H. (2011). Network DEA model for supply chain performance evaluation. European Journal of Operational Research 213(1) 147-155. doi: 10.1016/j.ejor.2011.03.010

  • Chen Y. Liang L. & Yang F. (2006). A DEA game model approach to supply chain efficiency. Annals of Operations Research 145(1) 5-13. doi: 10.1007/s10479-006-0022-y

  • Cook W. D. & Zhu J. (Ed.). (2014). Data Envelopment Analysis: A Handbook of Modeling Internal Structure and Network. Springer.

  • Färe R. & Grosskopf S. (2000). Network DEA. Socio-Economic Planning Sciences 34(1) 35-49.

  • Główny Urząd Statystyczny [Central Statistical Office of Poland]. (2014). Społeczeństwo informacyjne w Polsce. Wyniki badań statystycznych lat 2010-2014 [The information society in Poland. Statistical results of years 2010-2014]. Retrieved from http://stat.gov.pl/obszary-tematyczne/nauka-i-technika-spoleczenstwo-informacyjne/spoleczenstwo-informacyjne

  • Johnson A. & Mcginnis L. (2011). Performance measurement in the warehousing industry. IIE Transactions 43 220-230. doi: 10.1080/0740817X.2010.491497

  • Kao C. (2014). Network data envelopment analysis: A review. European Journal of Operational Research 239 1-16. doi: 10.1016/j.ejor.2014.02.039

  • Kozłowska J. (2014). Technical efficiency of Polish companies operating in the couriers and messengers sector – the application of data envelopment analysis method. Quantitative Methods in Economics XV(2) 339-348.

  • Lewis H. F. & Sexton T. R. (2004). Network DEA: efficiency analysis of organizations with complex internal structure. Computers & Operations Research 31 1365-1410. doi:10.1016/S0305-0548(03)00095-9

  • Liang L. Yang F. Cook W. D. & Zhu J. (2006). Data EA models for supply chain efficiency evaluation. Annals of Operations Research145(1) 35-49. doi 10.1007/s10479-006-0026-7

  • Liang L. Li Z. Q. Cook W. D & Zhu J. (2011). Data envelopment analysis efficiency in two stage networks with feedback. IIE Transactions 43(5) 309-322. doi:10.1080/0740817X.2010.509307

  • Lu B. & Wang X. L. (2012). Comparative Studies on Efficiency Evaluation of Chinese and Korean Major Container Terminals. Advances in information Sciences and Service Sciences (AISS) 4(23). doi: 10.4156/AISS

  • Mentzer J. T. DeWitt W. Keebler J. S. Soonhoong M. Nix N. W. Smith C. D. & Zacharia Z. G. (2001). Defining Supply Chain Management. Journal of Business Logistics22(2) 1-25. doi: 10.1002/j.2158-1592.2001.tb00001.x

  • Min H. & Joo S. J. (2006). Benchmarking the operational efficiency of third party logistics providers using data envelopment analysis. Supply Chain Management: An International Journal11(3) 259-265.

  • Mishra R. K. (2012). Measuring supply chain efficiency: A DEA approach. Journal of Operations and Supply Chain Management 5(1) 45-68.

  • Momeni E. Tavana M. Mirzagoltabar H. & Mirhedayatian S. M. (2014). A new fuzzy network slacks-based DEA model for evaluating performance of supply chains with reverse logistics. Journal of Intelligent & Fuzzy Systems 27 793-804. doi: 10.3233/IFS-131037

  • Quariguasi Frota Neto J. Bloemhof-Ruwaard J. M. van Nunen J. A. E. E. & van Heck E. (2008). Designing and evaluating sustainable logistics networks. International Journal Production Economics111 195-208. doi: 10.1016/j.ijpe.2006.10.014

  • Urząd Komunikacji Elektronicznej [Office of Electronic Communications]. (2015). Report on the state of the postal market in 2014. Retrieved from https://en.uke.gov.pl/files/?id_plik=20239

  • Urząd Komunikacji Elektronicznej [Office of Electronic Communications]. (2014). Report on the state of the postal market in 2013. Retrieved from https://en.uke.gov.pl/files/?id_plik=17039

  • Wong P. W. & Wong K. Y. (2007). Supply chain performance measurement system using DEA modeling. International Journal of Management and Data System 107(3) 361-381. doi: 10.1108/02635570710734271

  • Zhu J. (2003). Quantitative models for performance evaluation and benchmarking: data envelopment analysis with spreadsheets and DEA Excel Solver. Boston: Kluwer Academic Publishers.

Search
Journal information
Impact Factor


CiteScore 2018: 0.72

Source Normalized Impact per Paper (SNIP) 2018: 0.505

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 208 88 2
PDF Downloads 106 63 8