Smart city concept in the light of the literature review

Open access

Abstract

Nowadays, the transformations of metropolises into smart cities is a crucial factor in improving the living conditions of the inhabitants. The goal of the smart city concept is modern urban management using technical tools that offer state-of-the-art technologies, considering the applicable ecological standards while saving resources and achieving the expected results. The purpose of this article is to identify the areas of research analysed in the international literature in the field of smart cities. The bibliometric analysis was carried out to achieve the purpose. The analysis covered publications on smart cities published in Scopus and Web of Science databases from January 2009 to May 2019. Based on the bibliometric analysis, a bibliometric map was developed using the mapping technique VOS — the visualisation of similarities. Original clusters were created using the VOSviewer software. The bibliometric map visualises the results of the analysis that targeted the word coexistence.

Introduction

A city appears to be an obvious concept only when it is a secondary subject of research and is used as a relatively obvious context. As soon as it becomes the centre of interests, the focus should be not so much on precise and unambiguous definitions but functional conceptualisations (Matyja, 2017). A contemporary city is perceived as a socio-economic system. It is characterised by the complexity of many elements and their interrelations that integrate the city's components so that it can function and develop (Stawasz & Sikora-Fernandez, 2015). Urban development is determined by the constantly increasing migration of people from rural areas to urbanised areas. In 2018, 55% of the global population lived in urban areas. According to forecasts developed by the Population Division of the United Nations Department of Economic and Social Affairs (UN DESA), in 2050, this share will increase to 68%. The global urban population in 2018 was 4.2 billion. Increasing urbanisation and gradual migration of people from rural to urban areas, combined with the general increase in the global population, means that by 2050, urban areas will accommodate another 2.5 billion people (nearly 90% of this increase will take place in Asia and Africa) (United Nations, 2018). Based on the forecasts, the next few decades should see cities undergoing constant changes, including in their structures. With the expected increase in the number of urban residents around the world, the need is growing for new and innovative ways to manage the complexity of urban life.

Considering the growing importance of cities in the development of many regions and countries, supported each year by the increasing number of smart city initiatives, the authors conducted a bibliographic analysis of the existing publications in this area, collected in Scopus and Web of Science databases. The article aims to identify the areas of research analysed in the literature concerning a smart city. This measure represents the first stage of the research process, aiming to identify the research problems in the field and a solution, which would constitute a theoretical and practical contribution to the development of smart city management.

All the considerations and research in the field of discussed issues are included in four chapters. The first chapter presents a general approach to the conditions of contemporary cities and presents smart city concepts. Next, the methodology used for bibliometric analysis is described. The third chapter is devoted to the results of the conducted bibliometric analysis. The last part of the work analyses the obtained results and presents the conclusions.

1 Literature review

Intensive development, which is undoubtedly a challenge for modern cities, can give rise to positive outcomes for urban communities as well as negatively affect the smooth functioning of the city. The challenges of modern cities are centred around:

Knowing the identified challenges and the expected increase in the number of urban residents around the world, there is an increasing need for new and innovative ways to manage the complexity of urban life. In the last decade, the smart city concept has gained considerable popularity, ultimately enabling residents to better meet their housing, transport, energy and other infrastructure needs, but also as a key strategy to combat poverty and inequality, unemployment and energy management. The smart city concept assumes that a city should be a creative, sustainable area that improves the quality of life, creates a friendlier environment and the prospects of economic development are stronger (Lee et al., 2014). Intelligence as a distinguishing feature of this type of a city, should not be treated in the literal sense of the word but perceived as the sum of various improvements in urban infrastructure, resources and public services (Allwinkle & Cruickshank, 2011). Although there is no formal and widely accepted definition of a “smart city”, the ultimate goal is a better use of public resources, the improvement of the quality of services offered to citizens, while reducing operational costs of public administration (Zanella et al., 2014). It is understood that cities can be defined as smart if they have the following elements (Fig. 1).

Fig. 1
Fig. 1

Smart city elements

Source: elaborated by the authors based on (Stawasz & Sikora-Fernandez, 2016; Zanella et al., 2014; Caragliu et al., 2011).

Citation: Engineering Management in Production and Services 11, 2; 10.2478/emj-2019-0012

The smart economy is measured by entrepreneurship and a city's productivity, adaptation to changes, the flexibility of the labour market and international cooperation. Smart mobility is perceived by the accessibility of information and communication infrastructure, through the development of sustainable, innovative and safe transport. The smart environment is measured by the attractiveness of the natural environment, pollution levels, environmental protection activities and resource management methods.

Smart people are characterised by the level of qualifications, lifelong learning, social and ethnic diversity, creativity, openness and participation in public life. Smart living is measured by existing cultural facilities, living conditions (health, safety, housing), educational facilities, tourist attractiveness and social cohesion. Smart governance is expressed by the transparency of city management, social participation, the level of public services and the implementation of development strategies (Stawasz & Sikora-Fernandez, 2016; Zanella et al., 2014; Caragliu et al., 2011).

Many authors have attempted to formulate the definition of a “smart city” by binding it with different terms, which is indicative of the lack of a uniform or widely accepted definition (Schaffers et al., 2012; Zhuhadat et al., 2017; Chong et al., 2018). In publications dealing with the subject of a “smart city”, there are many alternative terms for this concept, such as: “digital city” (Tan, 1999), “wired city” (Targowski, 1990), “information city” (Fietkiewicz et al., 2017; Sproull & Patterson, 2004; Stolfi & Sussman, 2001), “ubiquitous city” (Shin, 2009), “sensing city” (Mone, 2015). When reviewing the literature, it was noticed that in the vast majority of publications, authors attempting to define the concept of a “smart city” focused on the technological aspect. For example, Peng, Nunes and Zheng (2017) defined a “smart city” as a city using a set of advanced technologies, such as wireless sensors, smart meters, intelligent vehicles, smartphones, mobile networks or data storage technologies. In turn, Guo et al. (2017) claimed that a “smart city” is urban development based on the integration of many information and communication technology (ICT) solutions to manage the city’s resources. These definitions of a “smart city” emphasise the role of technology. However, a city can hardly become smart because of technology alone (Nam & Pardo, 2014). Ortiz-Fournier et al. (2010) included citizens of smart cities in the definition of a “smart city”. The authors described a “smart city” in the context of its intelligent inhabitants, the quality of social interactions, and integration with public life. In the current perception of the “smart city” concept, there is a return to the needs and preferences of the inhabitants, which are the focus. Thus, technical solutions should serve their interests. Residents, their specific features and abilities are the basis of a modern city (Mizielińska-Chmielewska, 2018). As rightly noted by Noworól (2011), the local government should base their activities on the value system and focus on creating a vision of the future of the city. Szołtysek and Otręba (2015) added that the efficient preparation and implementation of activities were closely related to the need to recognise the feelings and emotions of all groups of residents, which should serve as a basis for efficient city management programmes. Huang, Zhang and Wang (2017) also emphasised aspects of city management. They defined a city as smart if it was managed in intelligently, efficiently and sustainably. According to the assumptions of Manville et al. (2014), a “smart city” is a city where public issues are solved using ICT, with the involvement of various types of stakeholders working in partnership with the city authorities.

As noted by Molpeceres Arnáiz (2017), according to some business and political discourses, a smart city seems to be the city of the future. However, despite the numerous potential amenities of a “smart city” that cities could draw from, there are some barriers that make the implementation of this concept difficult (Dohler et al., 2011). Among the difficulties that arise when implementing the “smart city” concept, several stand out (Ravetz, 2017; Naphade et al., 2011; Krukowska, 2018; Proseedmag, 2017; What ..., 2018; Sikora-Fernandez, 2017; Bashynska & Dyskina, 2018):

  • excessive concentration on investing in advanced technologies without the real perception of conflicts and problems in cities;
  • the deployment of smart technologies in cities with complex social problems can exacerbate social inequalities through technical improvements;
  • the lack of implemented solutions to use the local community to co-manage the city;
  • the lack of a comprehensive view of cities considering the needs in all areas of their functioning;
  • changes related to the introduction of the “smart city” concept, mainly including the technological aspect, may negatively affect the loss of the existing character and unique charm of some agglomerations, especially those valued due to their traditional character;
  • the majority of investments in the development of the “smart city” concept focuses on creating new facilities instead of modernising the old ones;
  • the development of smart city infrastructure requires huge investments, which are indirectly made by citizens, e.g. in the form of a higher tax rate;
  • managing cities is a huge challenge and requires, above all, intelligence, responsibility, and reasonableness, which cannot be replaced by modern technologies and especially building cities from scratch. City innovation is not glass skyscrapers and cosmic architecture, but the creation of the best living and working conditions;
  • incompetently or unknowingly used services by so-called digital illiterate people can cause much personal and systemic damage;
  • cities equipped with modern technologies, e.g. housing or newly built, do not become an object of interest to the inhabitants due to high maintenance costs and lack of social relationships (e.g. Masdar city or Tianjin Eco-city built in nearby Beijing, where there are no schools, shops, transport to factories where people can work).

Complexity, diversity and uncertainty are the three key attributes of modern cities (Fernandez-Guell et al., 2016), which hinder the conceptual and technical progress in the implementation of a “smart city”. In fact, this concept evolves from the simple integration of technology in the city with the development of solutions for urban challenges in a mutually connected and synergistic way (Lombardi et al., 2012; Mattoni et al., 2015). Processes that support the development, changes and everyday functioning of cities are complex and urban environments should be perceived as such as well, namely, as complex social engineering systems (Elzen et al., 2004). Many publications indicate the need to develop an integrated and holistic approach to a “smart city” (Perboli et al., 2014; Gil-Garcia et al., 2015).

2 Research methods

Considering the nature of the publication, which is a review, a bibliometric analysis was used as a research method. The results obtained using the bibliometric analysis are usually presented in the form of a map showing relationships between individual elements (Gudanowska, 2015, 2017; Siderska & Jadaa, 2018; Szpilko, 2017).

Based on the bibliometric analysis, the assessment of the dynamics of interest in the “smart city” subject was made, which is reflected in the number of publications in Scopus and Web of Science databases in the period from January 2009 to May 2019. In the next step of the research, a bibliometric map was created using the mapping technique VOS — the visualisation of similarities. VOS aims to locate items in a low-dimensional space in such a way that the distance between any two items reflects the similarity or relatedness of the items as accurately as possible (Eck & Waltman, 2011). The map was developed using the VOSviewer program, which is available from www.vosviewer.com The created map is the reflection of the co-occurrence of words and their co-classification in publications. The size of the wheels on the map reflects the number of specific words, while the distance between the wheels depends on the number of coexistence (Halicka, 2017). The co-word analysis is based on counting the frequency of appearance in the analysed text, a few words. It allows identifying phrasemes or regularities in the coexistence of words. Co-occurrence words can signal the existence of sub-area research or identify guideline directions for further development of a given research area. Results of the co-classification analysis allow identifying the sub-areas of research both in one area, as well as in interdisciplinary fields (Dobrzyński et al., 2013). This method enabled the creation of six clusters — the sub-areas of research relating to “smart city” issues.

The basic source of data in a bibliometric analysis is bibliographic databases. A review of the publications was made in Scopus and Web of Science databases. The databases were selected because of their size and availability. In Scopus and Web of Science, it is possible to save data from bibliographic queries in the form of files that can then be directly developed using the bibliographic software VOS-viewer. The formulation, based on which the database was searched, was “smart city”, including in article titles, abstracts and keywords.

3 Research results

The exploration of the Scopus database resulted in finding 15744 studies registered in the database, of which the largest part were (Fig. 2) conference papers (63.4%) and articles (24.5%). In the Web of Science, authors found 5151 publications, of which the largest part, similarly to Scopus, were (Fig. 3) conference papers (55.6%) and articles (41.2%).

Fig. 2
Fig. 2

Results of the search in the Scopus database — the document type criterion (indexed from January 2009 to May 2019)

Citation: Engineering Management in Production and Services 11, 2; 10.2478/emj-2019-0012

Fig. 3
Fig. 3

Results of the search in the Web of Science database — the document type criterion (indexed from January 2009 to May 2019)

Citation: Engineering Management in Production and Services 11, 2; 10.2478/emj-2019-0012

The great majority of publications were created in China, the United States, India, Italy, the United Kingdom, Spain, Germany and France. Numerous publications also originated in the Russian Federation, Australia and Japan.

The next step was dedicated to the analysis of the interest in the subject matter over the years. The time frame of the analysed period covered the last ten years from January 2009 to May 2019. The number of studies published in individual years is shown in Fig. 4.

Fig. 4
Fig. 4

Number of publications in the field of “smart city” in Scopus and Web of Science databases (indexed from January 2009 to May 2019)

Citation: Engineering Management in Production and Services 11, 2; 10.2478/emj-2019-0012

Analysing Fig. 4, it can be noticed that initially — for the first five years — the interest in this subject was not significant. It is only since 2014 that interest in the “smart city” concept clearly increased, which is reflected by the number of publications in the Scopus database. Such dynamic growth in interest in this subject highlights the importance and validity of the subject area. In the next step, the identified publications were analysed in terms of research areas (Figs. 5 and 6).

Fig. 5
Fig. 5

Identified publications in terms of a subject area (Scopus database, indexed from January 2009 to May 2019)

Citation: Engineering Management in Production and Services 11, 2; 10.2478/emj-2019-0012

Fig. 6
Fig. 6

Identified publications in terms of a subject area (Web of Science database, indexed from January 2009 to May 2019)

Citation: Engineering Management in Production and Services 11, 2; 10.2478/emj-2019-0012

In the Scopus database, over 34% of publications related to computer science and almost 19% to engineering. In the Web of Science, 37% relate to computer

science and 30% to engineering. This proves that in most publications, the authors focus on technological aspects, where urban development is based on many IT solutions to manage the city’s resources. However, more and more authors, namely, 12.1% (Scopus), indicate the importance of social aspects in the smart city concept.

In the last stage of the bibliometric analysis, a bibliometric map was developed, which is a visualisation of the results of the analysis regarding the coexistence of words using the VOSviewer software. The results of the analysis are presented in Fig. 7.

Fig. 7
Fig. 7

Map of sub-areas related to the “smart city” concept

Citation: Engineering Management in Production and Services 11, 2; 10.2478/emj-2019-0012

The analysis of the coexistence of words made it possible to distinguish six clusters as sub-areas related to the “smart city” concept. When analysing individual clusters, the following names were proposed:

  • Cluster 1 — smart technology;
  • Cluster 2 — socio-economic aspects;
  • Cluster 3 — environmental aspects;
  • Cluster 4 — urban logistics.

4 Discussion of the results

By making a bibliometric analysis of the smart city concept, a very dynamic increase in the interest of researchers in this field over the last five years has been noticed. The areas addressed by authors in their publications were computer science and engineering.

This proves that in most publications, authors focused on technological aspects, where urban development was based on the integration of many IT solutions aiming to manage the city’s resources. However, more and more authors in their publications indicated the importance of social aspects in the smart city concept. The analysis of the co-occurrence and co-classification of words made it possible to identify four clusters that constitute research sub-areas in the context of the smart city concept. In Tab. 1, research sub-areas of the smart city concept are indicated as well as related emerging research directions and issues.

Tab. 1

Sub-areas and main issues of smart city research

CLUSTERRESEARCH SUB-AREASMAIN RESEARCH ISSUES
1.SOCIO-ECONOMIC ASPECTS• the quality of social interaction (Neuroni et al., 2019; Tenney et al., 2019; Timmerman et al., 2019; Adnan et al., 2018; Vhaduri et al., 2018; Oliveira & Santos, 2018);
• the engagement of citizens in public life and decision-making; the participation of local stakeholders in managing public affairs; the collaboration between the local government and residents (Novo Vázquez & Vicente, 2019; Certomà & Rizzi, 2017; Streitz, 2017; Morgado et al., 2015; Ma & Lam, 2019; Horgan & Dimitrijević, 2019; Trencher, 2019; Manchester & Cope, 2019; Kundu, 2019; Mannan & Callenes-Sloan, 2019);
• healthcare (Sitón-Candanedo et al., 2019; Kumar et al., 2019; Kamel Boulos et al., 2019; Sedighian 2019; Chondrogiannis et al., 2019; Julian & Botti, 2019);
• security issues (Mattos et al., 2019; Krämer et al., 2019; Sittón-Candanedo et al., 2019; Sharma & Kalra, 2019; Xie & Hwang, 2019; Vitunskaite et al., 2019);
• education (Sodiq et al., 2019; Fernández et al., 2019; Panchanathan et al., 2019; Safiullin et al., 2019; Deng, 2019; Li, 2019);
• the development of entrepreneurship (Grimaldi et al., 2019; Gonzaga, 2019; Perng et al., 2018; Tay et al., 2018; Indravati et al., 2018; Carè et al., 2018);
2.URBAN LOGISTICS• congestion (Zhao et al., 2019; Zhu & Liang, 2019; Yang & Zhu, 2019; Mishra, 2019; Reddy & Mehta, 2019; Garg et al., 2019);
• traffic flow management (Zheng et al., 2019; Ferrer et al., 2019; Vranken et al., 2019; Vaida & Mouftah, 2019; Chen, 2019; Kuang et al., 2019);
• autonomous vehicles (Li et al., 2019; Cantas et al., 2019; Schmitt et al., 2019; Ji et al., 2019; Xie et al., 2019);
3.ENVIRONMENTAL ASPECTS• incorporating sustainable development principles into the smart city concept (Bibri, 2019; Ismagilova et al., 2019; Allam & Dhunny, 2019; Zhang & Pu, 2019; Cao et al., 2019; Chakrabarty, 2019);
4.SMART TECHNOLOGY• IOT — the Internet of things (Mattos et al., 2019; Sittón-Candanedo et al., 2019; Heaton & Parlikad, 2019; Jan et al. 2019; Rath & Pattanayak, 2019);
• cloud computing (Azhdari et al., 2019; Huang et al., 2019; Min-Allah et al., 2019; Wang et al., 2019; Del Esposte et al., 2019);
• big data (Kong et al., 2019; Putra et al., 2019; Lakshmanaprabu et al., 2019; Luo et al., 2019; Ameer et al., 2019);
• artificial intelligence (Khadse et al., 2019; Marcuzzi & Tonello, 2019; Wei et al., 2019; Panchamathan et al., 2019; Bui & Jung, 2019; Hu & Jiang, 2019);
• wireless sensor networks (Sadeghpour et al., 2019; Chammas et al., 2019; Godoi et al., 2019; Alduais et al., 2019; Marrero et al., 2019; Alchihabi et al., 2019; Sedighian & Kashi, 2019)

In the cluster defined as socio-economic aspects, there are elements such as the quality of social interaction and integration with public life. The important elements are living conditions, for example, healthcare, security and education. The basis of a “smart city” is residents and their needs. In this cluster, the role of inhabitants and local stakeholders stands out, meaning their participation in managing public affairs and decisions making processes. There is a strong need for creating transparent principles of collaboration between local government and residents. Also, no smart city is possible without the well-prospering economy. The key is to develop entrepreneurship and business that would not only function on the local market but internationally as well. Another research sub-area concerns environmental aspects. A city cannot be named smart if it has no activities in the field of environmental protection and resource management methods. The care for the quality of the natural environment is of utmost importance, for example, by reducing emissions, pollution and using renewable energy sources. Generally, the principles of sustainable development should be followed. Analysing the third cluster, it can be noticed that the subject of urban logistics plays an important role in the smart city concept. In this context, urban logistics should primarily focus on planning, coordination and controlling processes related to a city or urban agglomeration, moving people and goods in a way that optimises costs, minimises congestion and improves the quality of life of the residents. The analysis of individual clusters revealed that the identified sub-areas could be related to the key elements required for a city to be called smart (Fig. 8).

Fig. 8
Fig. 8

Identified subareas related to smart city elements

Citation: Engineering Management in Production and Services 11, 2; 10.2478/emj-2019-0012

Cluster 4 — smart technology — refers to a set of advanced technologies used in cities, such as wireless sensor networks, IOT, big data, cloud computing, artificial intelligence, applications, systems, mobile devices, mobile applications, wireless smartphones. The smart technology refers to each of the smart city elements. However, based on conclusions learned from the literature review and the previous difficulties in implementing the smart city concept, the real needs of people should always be placed first, and all aspects to smart of its city surroundings elements should be considered. The smart technology is not in the centre but is a specific background for other elements. It is a tool for achieving goals, not an end in itself. Each of the elements of the smart city concept is a wide field of research. However, it should be remembered that they constitute one integral and inseparable whole, and they should be treated as such in the practical context. For a city to be described as smart, it must have all these elements.

Conclusions

A smart city is a relatively new concept. The dynamic development of innovative technologies provides opportunities to build smart cities. However, as demonstrated by the literature review, excessive focus on the technological aspect alone leads to many problems in the implementation of the smart city concept. A city can hardly become smart only by using technology. In the current perception of the “smart city” concept, there is a return to the needs and preferences of the inhabitants. They are the focus, and technical solutions are to serve their interests.

The bibliometric map created for this publication allowed identifying six sub-areas of research related to the smart city concept. While analysing the individual clusters, it was noticed that they fit into the necessary elements of the smart city concept. For a city to be really smart, it must integrate such elements as the smart economy, smart people, smart living, the smart environment, the smart governance and smart mobility.

The literature review identified a research gap, which shows that the implementation of the smart city concept is poorly embedded in a multi-sphere and multi-variant vision of the future In the opinion of the authors, a tool that would enable the development of a vision of the future of a smart city with the involvement of a wide range of stakeholders forming a local community, could be foresight, which has been successfully used in building a vision of the future of countries, regions and businesses (Nazarko, 2013; Nazarko et al. 2013, 2015a, 2015b; Ejdys, 2014; Szpilko 2015; Ejdys et al., 2019). It, therefore, seems appropriate to develop a foresight methodology for planning the future of smart cities, in which citizens are both users and co-creators of smart cities. To develop the methodology of creating smart city development based on foresight studies, research in this field of science will be continued by the authors.

Literature

  • Aguilar A. G. & López F. M. (2016). Espacios de pobreza en la periferia urbana y suburbios interiores de la Ciudad de México.Las desventajas acumuladas [Poverty spaces in the urban periphery and inner suburbs of the Mexico city accumulated disadvantages]. Eure 42(125) 5-29. doi: 10.4067/S0250-71612016000100001

  • Alam S. S. Islam A. J. Hasan M. M. Rafid M. N. M. Chakma N. & Imtiaz M. N. (2018). Design and development of a low-cost IoT based environmental pollution monitoring system. 4th International Conference on Electrical Engineering and Information and Communication Technology iCEEiCT652-656.

  • Alchihabi A. Dervis A. Ever E. & Al-Turjman F. (2019). A generic framework for optimizing performance metrics by tuning parameters of clustering protocols in WSNs. Wireless Networks 25(3) 1031-1046. doi: 10.1007/s11276-018-1665-8

    • Crossref
    • Export Citation
  • Alduais N. A. M. Abdullah I. & Jamil A. (2019). An efficient data collection algorithm for wearable / mobile tracking system in IoT /WSN. Electrical Power Electronics Communications Controls and Informatics Seminar EECCIS 2018 250-254. doi: 10.1109/EECCIS.2018.8692815

  • Allam Z. & Dhunny Z. A. (2019). On big data artificial intelligence and smart cities. Cities 89 80-91. doi: 10.1016/j.cities.2019.01.032

    • Crossref
    • Export Citation
  • Allwinkle S. & Cruickshank P. (2011) Creating Smarter Cities: An Overview. Journal of Urban Technology 18(2) 1-16. doi: 10.1080/10630732.2011.601103

    • Crossref
    • Export Citation
  • Ameer S. & Shah M. A. (2019). Exploiting big data analytics for smart urban planning IEEE Vehicular Technology Conference 2018-August. doi: 10.1109/ICSPCS.2018.8631726

  • Amritha P. K. & Kumar P. P. A. (2019). Productive landscapes as a sustainable organic waste management option in urban areas. Environment Development and Sustainability 21(2) 709-726. doi: 10.1007/s10668-017-0056-0

    • Crossref
    • Export Citation
  • Azhdari G. Lagzian M. Shirazi A. & Fayyazi M. (2019). Electronic human resource management adoption model in knowledge base small and medium enterprises. Iranian Journal of Information Processing Management 34(2) 535-556. doi: 10.19166/derema. v13i1.491

  • Bashynska I. & Dyskina A. (2018). The overview-analytical document of the international experience of building smart city. Business: Theory and Practice 19 228-241. doi: 10.3846/btp.2018.23

  • Bibri S. E. (2019). On the sustainability of smart and smarter cities in the era of big data: An interdisciplinary and transdisciplinary literature review. Journal of Big Data 6(1). doi: 10.1186/s40537-019-0182-7

  • Binti Adnan S. N. N. Awang J. Rahman Z. A. Ibrahim M. Long A. S. Kamarzaman H. & Mohamed S. B. (2018). The ‘umran al ‘alam theory’s approach to the social smart city ethical. International Journal of Civil Engineering and Technology 9(7) 269-277.

  • Bjørgen A. Seter H. Kristensen T. & Pitera K. (2019). The potential for coordinated logistics planning at the local level: A Norwegian in-depth study of public and private stakeholders Journal of Transport Geography 76 34-41. doi: 10.1016/j.jtrangeo.2019.02.010

    • Crossref
    • Export Citation
  • Bugge M. M. Fevolden A. M. & Klitkou A. (2019). Governance for system optimization and system change: The case of urban waste. Research Policy 48(4) 1076-1090. doi: 10.1016/j.respol.2018.10.013

    • Crossref
    • Export Citation
  • Bui K. N. & Jung J. J. (2019). Computational negotiation-based edge analytics for smart objects. Information Sciences 480 222-236. doi: 10.1016/j.ins.2018.12.046

    • Crossref
    • Export Citation
  • Cantas M. R. Kavas O. Tamilarasan S. Gelbal S. Y. & Guvenc L. (2019). Use of hardware in the loop (HIL) simulation for developing connected autonomous vehicle (CAV) applications SAE Technical Papers 2019-April. doi: 10.4271/2019-01-1063

  • Cao W. Zhang Y. & Qian P. (2019). The effect of innovation-driven strategy on green economic development in China-an empirical study of smart cities. International Journal of Environmental Research and Public Health 16(9). doi: 10.3390/ijerph16091520

    • PubMed
    • Export Citation
  • Caparros-Midwood D. Dawson R. & Barr S. (2019). Low carbon low risk low density: Resolving choices about sustainable development in cities. Cities 89 252-267. doi: 10.1016/j.cities.2019.02.018

    • Crossref
    • Export Citation
  • Caragliu A. Del Bo Ch. & Nijkamp P. (2011). Smart Cities in Europe. Journal of Urban Technology 18(2) 65-82. doi: 10.1080/10630732.2011.601117

    • Crossref
    • Export Citation
  • de Castro Pena J. C. de Assis J. C. da Silva R. A. Honda L. K. Pagani M. I. & Ribeiro M. C. (2017). Beyond the mining pit: The academic role in social deliberation for participatory environmental planning Perspectives in Ecology and Conservation 15(3) 194-198. doi: 10.1016/j.pecon.2017.06.006

    • Crossref
    • Export Citation
  • Carè S. Trotta A. Carè R. & Rizzello A. (2018). Crowdfunding for the development of smart cities. Business Horizons 61(4) 501-509. doi: 10.1016/j.bush-or.2017.12.001

    • Crossref
    • Export Citation
  • Certomà C. & Rizzi F. (2017). Crowdsourcing processes for citizen-driven governance In C. Certomà M. Dyer L. Pocatilu F. Rizzi (Eds.) Citizen Empowerment and Innovation in the Data-Rich City (pp. 57-77). Cham Switzerland: Springer Tracts in Civil Engineering. doi:10.1007/978-3-319-47904-0_4

    • Crossref
    • Export Citation
  • Chakrabarty A. (2019). Smart mischief: An attempt to demystify the smart cities craze in India. Environment and Urbanization 31(1) 193-208. doi: 10.1177/0956247818769234

    • Crossref
    • Export Citation
  • Chammas M. Makhoul A. & Demerjian J. (2019). An efficient data model for energy prediction using wireless sensors. Computers and Electrical Engineering 76 249-257

    • Crossref
    • Export Citation
  • Chen M. (2019). Modeling and simulation analysis of road network based on VISSIM Proceedings - 2019 International Conference on Intelligent Transportation Big Data and Smart City ICITBS 2019 32-35. doi: 10.1109/ICITBS.2019.00017

  • Chondrogiannis E. Andronikou V. Karanastasis E. & Varvarigou T. (2019). A novel approach for clinical data harmonization IEEE International Conference on Big Data and Smart Computing BigComp 2019 – Proceedings. doi: 10.1109/BIGCOMP.2019.8679239

  • Chong M. Habib A. Evangelopoulos N. & Park H. W. (2018). Dynamic capabilities of a smart city: An innovative approach to discovering urban problems and solutions. Government Information Quarterly 35(4) 682-692. doi: 10.1016/j.giq.2018.07.005

    • Crossref
    • Export Citation
  • Chourabi H. Nam T. Walker S. Gil-Garcı´a J. Mellouli S. Nahon K. Pardo T. A. & Scholl H. (2012). Understanding Smart Cities: An Integrative Framework. Proceedings of 45th Hawaii International Conference on Systems Science 2289-2297.

  • Cleophas C. Cottrill C. Ehmke J. F. & Tierney K. (2019). Collaborative urban transportation: Recent advances in theory and practice. European Journal of Operational Research 273(3) 801-816. doi: 10.1016/j.ejor.2018.04.037

    • Crossref
    • Export Citation
  • Deng J. (2019). The teaching reform of higher vocational business English course informationization on the background of education informationization 2.0. Proceedings - 2019 International Conference on Intelligent Transportation Big Data and Smart City ICITBS 2019 324-326. doi: 10.1109/ICITBS.2019.00085

  • Dlamini S. Simatele M. D. & Serge Kubanza N. (2019). Municipal solid waste management in South Africa: From waste to energy recovery through waste-to-energy technologies in Johannesburg Local Environment 24(3) pp. 249-257. doi: 10.1080/13549839.2018.1561656

    • Crossref
    • Export Citation
  • Dobrzyński M. Dziekoński K. & Jurczuk A. (2013). Analiza bibliometryczna artykułów w “Gospodarce Materiałowej i Logistyce” z lat 2010-2012 [Bibliometric analysis of articles in “Materials Management and Logistics” from the years 2010-2012]. Gospodarka Materiałowa i Logistyka 12 24-31.

  • Dohler M. Vilajosana I. Vilajosana X. & Llosa J. (2011). Smart Cities: An action plan. Proceedings of Barcelona Smart Cities Congress Spain Barcelona 1-6.

  • van Eck N.J. & Waltman L. (2011). VOSviewer Manual. Manual for VOSviewer version 1.3.0. software documentation.

  • Ejdys J. (2014). Future oriented strategy for SMEs. Procedia – Social and Behavioral Sciences 156 8-12. doi: 10.1016/j.sbspro.2014.11.110

    • Crossref
    • Export Citation
  • Ejdys J. Gudanowska A. Halicka K. Kononiuk A. Magruk A. Nazarko J. Nazarko L. Szpilko D. & Widelska U. (2019). Foresight in higher education institutions: evidence from Poland. Foresight and STI Governance 13(1) 77-89. doi: 10.17323/2500-2597.2019.1.77.89

    • Crossref
    • Export Citation
  • Elzen B. Geels F. W. & Green K. (2004). Transitions to sustainability: lessons learned and remaining challenges. In B. Elzen F. W. Geels & K. Green (Eds.) System Innovation and the Transition to Sustainability (pp. 282-300). United Kingdom Cheltenham: Edward Elgar Publishing.

  • Fang C. C. & Lai C. (2018). Application for the geriatrics in cognitive city: Prevention of lost patient with dementia Proceedings – 2018 1st International Cognitive Cities Conference IC3 28-31.

  • Faramehr S. Hemida H. & Fujiyama T. (2019). Evaluation of the impact of urban water systems on railways: The scenario of track flooding caused by a water main burst. Proceedings of the Institution of Mechanical Engineers Part F: Journal of Rail and Rapid Transit. doi: 10.1177/0954409719830184

  • Fernández Vilas A. Díaz Redondo R. P. & Ben Khalifa M. (2019). Analysis of crowds’ movement using Twitter. Computational Intelligence 35(2) pp. 448-472. doi: 10.1111/coin.12205

    • Crossref
    • Export Citation
  • Fernandez-Guell J. M. Guzmán-Arana S. Collado-Lara M. & Fernandez-Anez V. (2016). How to Incorporate Urban Complexity Diversity and Intelligence into Smart Cities Initiatives. Smart Cities: First International Conference Smart-CT 2016 Málaga Spain June 15-17 85-94.

  • Ferrer J. López-Ibáñez M. & Alba E. (2019). Reliable simulation-optimization of traffic lights in a real-world city. Applied Soft Computing Journal 78 697-711. doi: 10.1016/j.asoc.2019.03.016

    • Crossref
    • Export Citation
  • Fietkiewicz K. J. Mainka A. & Stock W. G. (2017). eGovernment in cities of the knowledge society. An empirical investigation of Smart Cities’ governmental websites. Government Information Quarterly 34(1) 75-83. doi: /10.1016/j.giq.2016.08.003

    • Crossref
    • Export Citation
  • Firdausiyah N. Taniguchi E. & Qureshi A. G. (2019). Modeling city logistics using adaptive dynamic programming based multi-agent simulation. Transportation Research Part E: Logistics and Transportation Review 125 74-96. doi: 10.1016/j. tre.2019.02.011

    • Crossref
    • Export Citation
  • Garg S. Singh A. Kaur K. Aujla G. S. Batra S. Kumar N. & Obaidat M. S. (2019). Edge computing-based security framework for big data analytics in VANETs. IEEE Network 33(2) 72-81. doi: 10.1109/MNET.2019.1800239

    • Crossref
    • Export Citation
  • Gil-Garcia J. R. Pardo T. A. Nam T. (2015). A Comprehensive View of the 21st Century City: Smartness as Technologies and Innovation in Urban Contexts. In Gil-Garcia J. R. Pardo T. & Nam T. (Eds.) Smarter as the New Urban Agenda. Public Administration and Information Technology (pp. 1-19). Cham Switzerland: Springer.

  • Godoi F. N. Denardin G. W. & Barriquello C. H. (2019). Reliability enhancement of packet delivery in multi-hop wireless sensor network. Computer Networks 153 86-91

    • Crossref
    • Export Citation
  • Gonzaga E. (2019). Precarious nostalgia in the tropical smart city: Transmedia memory urban informatics and the singapore golden jubilee. Cultural Studies 33(1) 147-169. doi: 10.1080/09502386.2018.1428644

    • Crossref
    • Export Citation
  • Greenfield E. A. (2018). Age-friendly initiatives social inequalities and spatial justice Hastings Center Report 48 41-45. doi: 10.1002/hast.912

    • Crossref
    • Export Citation
  • Grimaldi D. Fernandez V. & Carrasco C. (2019). Heuristic for the localization of new shops based on business and social criteria. Technological Forecasting and Social Change 142 249-257. doi: 10.1016/j.techfore.2018.07.034

    • Crossref
    • Export Citation
  • Gudanowska A. E. (2015). Tworzenie mapy wiedzy opartej na tematyce projektów badawczo – rozwojowych na przykładzie województwa podlaskiego [Creating knowledge maps based on the themes of R&D projects on the example of the Podlaskie region]. Economics and Management 7(1) 257-270. doi: 10.12846/j.em.2015.01.16

  • Gudanowska A. E. (2017). A map of current research trends within technology management in the light of selected literature. Management and Production Engineering Review 8(1) 78-88. doi: 10.1515/mper2017-0009

    • Crossref
    • Export Citation
  • Guo J. Ma J. Li X. Zhang J. & Zhang T. (2017). An attribute-based trust negotiation protocol for D2D communication in smart city balancing trust and privacy Journal of Information Science and Engineering 33(4) 1007-1023. doi: 10.6688/JISE.2017.33.4.10

  • Halicka K. (2017). Main concepts of technology analysis in the light of the literature on the subject. Procedia Engineering 182 291-298 doi: 10.1016/j.proeng.2017.03.196

    • Crossref
    • Export Citation
  • Halmy M. W. A. (2019). Assessing the impact of anthropogenic activities on the ecological quality of arid mediterranean ecosystems (case study from the northwestern coast of Egypt). Ecological Indicators 101 992-1003. doi: 10.1016/j.ecolind.2019.02.005

    • Crossref
    • Export Citation
  • Heaton J. & Parlikad A. K. (2019). A conceptual framework for the alignment of infrastructure assets to citizen requirements within a smart cities framework. Cities 90 32-41. doi: 10.1016/j. cities.2019.01.041

    • Crossref
    • Export Citation
  • van Holm E. J. (2019). Unequal cities unequal participation: The effect of income inequality on civic engagement. American Review of Public Administration 49(2) 135-144. doi: 10.1177/0275074018791217

    • Crossref
    • Export Citation
  • Horgan D. & Dimitrijević B. (2019). Frameworks for citizens participation in planning: From conversational to smart tools. Sustainable Cities and Society 48. doi:10.1016/j.scs.2019.101550

  • Hu S. & Jiang T. (2019). Artificial intelligence technology challenges patent laws. Proceedings - 2019 International Conference on Intelligent Transportation Big Data and Smart City ICITBS 2019 241-244. doi: 10.1109/ICITBS.2019.00064

  • Huang H. Lu Z. Peng R. Feng Z. Xuan X. Hung P. C. K. & Huang S. C. (2019). Efficiently querying large process model repositories in smart city cloud workflow systems based on quantitative ordering relations. Information Sciences 495 100-115. doi: 10.1016/j.ins.2019.04.058

    • Crossref
    • Export Citation
  • Huang K. Zhang X. S. & Wang X. F. (2017) Block-level message-locked encryption with polynomial commitment for IoT data. Journal of Information Science and Engineering 33(4) 891-905. doi: 10.6688/JISE.2017.33.4.2

  • Indrawati I. Azkalhaq N. & Amani H. (2018). Indicators to measure smart economy: An Indonesian perspective ACM International Conference Proceeding Series 173-179. doi: 10.1145/3278252.3278278

  • Ismagilova E. Hughes L. Dwivedi Y. K. & Raman K. R. (2019). Smart cities: Advances in research – An information systems perspective. International Journal of Information Management 47 88-100. doi: 10.1016/j. ijinfomgt.2019.01.004

    • Crossref
    • Export Citation
  • Jan M. A. Zhang W. Usman M. Tan Z. Khan F. & Luo E. (2019). SmartEdge: An end-to-end encryption framework for an edge-enabled smart city application. Journal of Network and Computer Applications 137 1-10. doi: 10.1016/j. jnca.2019.02.023

    • Crossref
    • Export Citation
  • Jarocka M. & Wang H. (2018). Definition and classification criteria of logistics services for elderly. Engineering Management in Production and Services 10(4) 65-75. doi: 10.2478/emj-2018-0023

    • Crossref
    • Export Citation
  • Jayantha W. M. Qian Q. K. & Yi C. O. (2018). Applicability of ‘Aging in place’ in redeveloped public rental housing estates in hong kong. Cities 83 140-151. doi: 10.1016/j.cities.2018.06.016

    • Crossref
    • Export Citation
  • Ji W. Xu J. Qiao H. Zhou M. & Liang B. (2019). Visual IoT: Enabling internet of things visualization in smart cities. IEEE Network 33(2) 102-110. doi: 10.1109/MNET.2019.1800258

    • Crossref
    • Export Citation
  • Julian V. & Botti V. (2019). Multi-agent systems. Applied Sciences 9(7). doi: 10.3390/app9071402

  • Juwet G. & Ryckewaert M. (2018). Energy transition in the nebular city: Connecting transition thinking metabolism studies and urban design. Sustainability 10(4). doi: 10.3390/su10040955

  • Kamel Boulos M. N. Peng G. & Vopham T. (2019). An overview of GeoAI applications in health and healthcare. International Journal of Health Geographics 18(1).

    • PubMed
    • Export Citation
  • Khadse V. Mahalle P. N. & Biraris S. V. (2019). An empirical comparison of supervised machine learning algorithms for internet of things data. Proceedings - 2018 4th International Conference on Computing Communication Control and Automation ICCUBEA 2018. doi: 10.1109/ICCUBEA.2018.8697476

  • Kong X. Li M. Li J. Tian K. Hu X. & Xia F. (2019). CoPFun: An urban co-occurrence pattern mining scheme based on regional function discovery. World Wide Web 22(3) 1029-1054. doi: 10.1007/s11280-018-0578-x

    • Crossref
    • Export Citation
  • Kosheleva N. E. Vlasov D. V. Korlyakov I. D. & Kasimov N. S. (2018). Contamination of urban soils with heavy metals in Moscow as affected by building development. Science of the Total Environment 636 854-863. doi: 10.1016/j.scitotenv.2018.04.308

    • Crossref
    • Export Citation
  • Kovács Z. Farkas Z. J. Egedy T. Kondor A. C. Szabó B. Lennert J. Baka D. & Kohán B. (2019). Urban sprawl and land conversion in post-socialist cities: The case of metropolitan Budapest. Cities 92 71-81. doi: 10.1016/j.cities.2019.03.018

    • Crossref
    • Export Citation
  • Krämer M. Frese S. & Kuijper A. (2019). Implementing secure applications in smart city clouds using microservices. Future Generation Computer Systems 99 308-320. doi: 10.1016/j.future.2019.04.042

    • Crossref
    • Export Citation
  • Kuang A. Zhang S. & Yang H. (2019). Research on signal control method of isolated intersection based on the queuing length reliability. Proceedings - 2019 International Conference on Intelligent Transportation Big Data and Smart City ICITBS 2019 533-535. doi: 10.1109/ICITBS.2019.00133

  • Kumar S. Lal N. & Chaurasiya V. K. (2019). An energy efficient IPv6 packet delivery scheme for industrial IoT over G.9959 protocol based wireless sensor network (WSN). Computer Networks 154 79-87

    • Crossref
    • Export Citation
  • Kundu D. (2019). Blockchain and trust in a smart city. Environment and Urbanization ASIA 10(1) 31-43. doi: 10.1177/0975425319832392

    • Crossref
    • Export Citation
  • Lakshmanaprabu S. K. Shankar K. Sheeba Rani S. Abdulhay E. Arunkumar N. Ramirez G. & Uthayakumar J. (2019). An effect of big data technology with ant colony optimization-based routing in vehicular ad hoc networks: Towards smart cities. Journal of Cleaner Production 217 584-593. doi: 10.1016/j. jclepro.2019.01.115

    • Crossref
    • Export Citation
  • Lanjouw P. & Marra M. R. (2018). Urban poverty across the spectrum of Vietnam’s towns and cities World Development 110 295-306. doi: 10.1016/j.worlddev.2018.06.011

    • Crossref
    • Export Citation
  • Lee J. H. Hancock M. G. & Hu M.-Ch. (2014). Towards an effective framework for building smart cities: Lessons from Seoul and San Francisco. Technological Forecasting & Social Change 89 80-99. doi: 10.1016/j.techfore.2013.08.033

    • Crossref
    • Export Citation
  • Li L. (2019). Evaluation model of education service quality satisfaction in colleges and universities dependent on classification attribute big data feature selection algorithm Proceedings - 2019 International Conference on Intelligent Transportation Big Data and Smart City ICITBS 2019 645-649. doi: 10.1109/ICITBS.2019.00160

  • Li X. Zhu S. Gelbal S. Y. Cantas M. R. Aksun Guvenc B. & Guvenc L. (2019). A unified scalable and replicable approach to development implementation and HIL evaluation of autonomous shuttles for use in a smart city. SAE Technical Papers 2019-April. doi: 10.4271/2019-01-0493

  • Lombardi P. Giordano S. Farouh H. & Yousef W. (2012). Modelling the Smart City Performance Innovation: The European Journal of Social Science Research 25(2) 137-149. doi: 10.1080/13511610.2012.660325

  • Luo Y. Du X. & Sun Y. (2019). Survey on real-time anomaly detection technology for big data streams. Proceedings of the International Conference on Anti-Counterfeiting Security and Identification ASID 2018-November 26-30. doi: 10.1109/ICASID.2018.8693216

  • de M. Del Esposte A. Santana E. F. Z. Kanashiro L. Costa F. M. Braghetto K. R. Lago N. & Kon F. (2019). Design and evaluation of a scalable smart city software platform with large-scale simulations. Future Generation Computer Systems 93 427-441. doi: 10.1016/j.future.2018.10.026

    • Crossref
    • Export Citation
  • Ma B. Li H. Wei Y. D. Xue D. & Jiang J. (2018). Spatial structure and mechanism of urban poverty in Xi’an city. Acta Geographica Sinica 73(6) 1018-1032. doi: 10.11821/dlxb201806003

  • Ma R. & Lam P. T. I. (2019). Investigating the barriers faced by stakeholders in open data development: A study on Hong Kong as a “smart city”. Cities 92 36-46. doi: 10.1016/j.cities.2019.03.009

    • Crossref
    • Export Citation
  • Mahmoud H. & Divigalpitiya P. (2019). Spatiotemporal variation analysis of urban land expansion in the establishment of new communities in Upper Egypt: A case study of New Asyut city Egyptian Journal of Remote Sensing and Space Science 22(1) 59-66. doi: 10.1016/j.ejrs.2018.03.006

    • Crossref
    • Export Citation
  • Manchester H. & Cope G. (2019). Learning to be a smart citizen. Oxford Review of Education 45(2) 224-241. doi: 10.1080/03054985.2018.1552582

    • Crossref
    • Export Citation
  • Mannan S. & Callenes-Sloan J. (2019). Treety: A data-driven approach to urban canopy development IEEE International Smart Cities Conference ISC2 2018. doi:10.1109/ISC2.2018.8656956

  • Manville C. Cochrane G. Cave J. Millard J. Pederson J. K. Thaarup R. K. Liebe A. Wissner M. Massink R. & Kotterink B. (2014). Mapping Smart Cities in the EU. Study Directorate-General for Internal Policies Policy Department A: Economic and Scientific Policy European Parliament Brussels.

  • Marcuzzi F. & Tonello A. M. (2019). Artificial-intelligence-based performance enhancement of the G3-PLC LOADng routing protocol for sensor networks. Proceedings of the 2019 IEEE International Symposium on Power Line Communications and its Applications ISPLC 2019 114-119. doi: 10.1109/ISPLC.2019.8693390

  • Marrero D. Macías E. Suárez Á. Santana J. A. & Mena V. (2019). Energy saving in smart city wireless backbone network for environment sensors. Mobile Networks and Applications 24(2) 700-711. doi: 10.1007/s11036-016-0786-5

    • Crossref
    • Export Citation
  • Mattoni B. Gugliermetti F. Bisegna F. (2015). A multilevel method to assess and design the renovation and integration of Smart Cities. Sustainable Cities and Society 15 105-119. doi: 10.1016/j. scs.2014.12.002

    • Crossref
    • Export Citation
  • Mattos D. M. F. Velloso P. B. & Duarte O. C. M. B. (2019). An agile and effective network function virtualization infrastructure for the internet of things. Journal of Internet Services and Applications 10(6). doi: 10.1186/s13174-019-0106-y

  • Matyja R. (2017). Miasto jako przestrzeń węzeł i system. Analiza z perspektywy badań politologicznych [The city as space node and system. Analysis from the perspective of political science research]. Acta Politica Polonica 3(41) 5-16. doi: 10.18276/ap.2017.41-01

  • Mavrodieva A. V. Daramita R. I. F. Arsono A. Y. Yawen L. & Shaw R. (2019). Role of civil society in sustainable urban renewal (Machizukuri) after the Kobe Earthquake Sustainability 11(2). 10.3390/su11020335

  • Mesjasz-Lech A. (2014) Development of public transport in the city a challenge for urban logistics in terms of sustainable development. Forum Scientiae Oeconomia 2(4) 63-75.

  • Min-Allah N. Qureshi M. B. Alrashed S. & Rana O. F. (2019). Cost efficient resource allocation for real-time tasks in embedded systems. Sustainable Cities and Society 48. doi: 10.1016/j.scs.2019.101523

  • Mishra A. K. (2019). Henry George and Mohring–Harwitz theorems: Lessons for financing smart cities in developing countries. Environment and Urbanization ASIA 10(1) 13-30. doi: 10.1177/0975425318821797

    • Crossref
    • Export Citation
  • Mizielińska-Chmielewska M. (2018). Inteligentne miasta podążają za modelem ekonomii współdzielenia Smart Cities follow the sharing economy model Retrieved from http://www.inteligentnemiasto.com/smart-cities/inteligentne-miasta-podazaja-za-modelem-ekonomii-wspoldzielenia

  • Molpeceres Arnáiz S. [2017]. Smart City vs. Wise City. En torno a la ciudad y las nuevas tecnologías el caso de Barcelona [Smart City vs. Wise City. Around the city and new technologies the the case of Barcelona]. Cultura Lenguaje y Representación 17 129-155. doi: 10.6035/clr.2017.17.9

  • Mone G. (2015). The new smart cities Communications of the ACM 58(7) 20-21. doi: 10.1145/2771297

    • Crossref
    • Export Citation
  • Morgado L. Rodrigues R. Coelho A. Magano O. Calçada T. Cunha P. T. & Ramos L. (2015). Cities in citizens’ hands. Procedia Computer Science 67 430-438. doi: 10.1016/j.procs.2015.09.288

    • Crossref
    • Export Citation
  • Muktiali M. (2018). Policy analysis of poverty alleviation in Semarang city using spatial and sectoral approach. IOP Conference Series: Earth and Environmental Science 123(1). doi: 10.1088/1755-1315/123/1/012046

  • Munoz-Pandiella I. Bosch C. Merillou N. Patow G. Merillou S. & Pueyo X. (2018). Urban weathering: Interactive rendering of polluted cities IEEE Transactions on Visualization and Computer Graphics 24(12) 3239-3252. doi: 10.1109/TVCG.2018.2794526

    • Crossref
    • PubMed
    • Export Citation
  • Nam T. & Pardo T. A. (2014). The changing face of a city government: A case study of Philly311 Government Information Quarterly 31(Supplement 1) S1-S9. doi: 10.1016/j.giq.2014.01.002

    • Crossref
    • Export Citation
  • Naphade M. Banavar G. Harrison C. Paraszczak J. & Morris R. (2011). Smarter Cities and Their Innovation Challenges. Computer 44(6) 32-39. doi: 10.1109/MC.2011.187

    • Crossref
    • Export Citation
  • Nataraj S. Ferone D. Quintero-Araujo C. Juan A. A. & Festa P. (2019). Consolidation centers in city logistics: A cooperative approach based on the location routing problem International Journal of Industrial Engineering Computations 10(3) 393-404. doi: 10.5267/j.ijiec.2019.1.001

  • Nazarko J. (2013). Regionalny Foresight Gospodarczy. Metodologia i instrumentarium badawcze Regional Economic Foresight. Methodology and Research Tools Warsaw Poland: Związek Pracodawców Warszawy i Mazowsza.

  • Nazarko J. Ejdys J. Halicka K. & Nazarko Ł. (2015a). Foresight Application for Transport Sector. In Fiorini M. (Ed.) Clean Mobility and Intelligent Transport Systems (pp. 379-402). London United Kingdom: The Institution of Engineering and Technology.

  • Nazarko J. Glinska U. Kononiuk A. Nazarko L. (2013). Sectoral foresight in Poland: thematic and methodological analysis. International Journal of Foresight and Innovation Policy 9(1) 19-38. doi: 10.1504/IJFIP.2013.051759

    • Crossref
    • Export Citation
  • Nazarko J. Radziszewski P. Dębkowska K. Ejdys J. Gudanowska A. Halicka K. Kilon J. Kononiuk A. Kowalski K. Krol J. Nazarko Ł. Sarnowski M. & Vilutiene T. (2015b). Foresight Study of Road Pavement Technologies. Procedia Engineering 122 129-136. doi: 10.1016/j.proeng.2015.10.016

    • Crossref
    • Export Citation
  • Neuroni A. C. Haller S. van Winden W. Carabias-Hütter V. & Yildirim O. (2019). Public value creation in a smart city context: An analysis framework. In M. P. Rodriguez Bolivar (Ed.) Setting Foundations for the Creation of Public Value in Smart Cities (pp. 49-76). Cham Switzerland: Springer Nature AG. doi:10.1007/978-3-319-98953-2_3

  • Novo Vázquez A. & Vicente M. R. (2019). Exploring the determinants of e-participation in smart cities. In A. Novo Vázquez & M. R. Vicente E-Participation in Smart Cities: Technologies and Models of Governance for Citizen Engagement (pp. 157-178). Cham Switzerland: Springer International Publishing AG.doi:10.1007/978-3-319-89474-4_8

  • Noworól A. (2011) Zarządzanie miastem – podstawy teoretyczne [Urban management - theoretical basis]. In B. Kożuch C. Kochalski (Eds.) Strategiczne zarządzanie miastem w teorii i praktyce urzędu miasta Poznania Strategic management of the city in the theory and practice of the Poznań City Hall (pp. 25-41). Kraków Poland: Monografie i Studia Instytutu Spraw Publicznych Uniwersytetu Jagiellońskiego 7.

  • Oliveira Á. & Santos I. (2018). Human smart cities. Cocreation methodologies and technologies. WMSCI 2018 - 22nd World Multi-Conference on Systemics Cybernetics and Informatics Proceedings 1 154-160.

  • Onoda Y. (2018). A paradigm shift in city management practices targets the sustainable society NEC Technical Journal 13(1) 19-23.

  • Ortiz-Fournier L. V. Márquez E. Flores F. R. Rivera-Vázquez J. C. & Colon P. A. (2010). Integrating educational institutions to produce intellectual capital for sustainability in Caguas Puerto Rico. Knowledge Management Research and Practice 8(3) 203-215. doi: 10.1057/kmrp.2010.11

    • Crossref
    • Export Citation
  • Panchanathan S. Mcdaniel T. Tadayon R. Rukkila A. & Venkateswara H. (2019). Smart stadia as testbeds for smart cities: Enriching fan experiences and improving accessibility. International Conference on Computing Networking and Communications ICNC 2019 542-546.

  • Panchanathan S. Mcdaniel T. Tadayon R. Rukkila A. & Venkateswara H. (2019). Smart stadia as testbeds for smart cities: Enriching fan experiences and improving accessibility International Conference on Computing Networking and Communications ICNC 2019 542-546. doi: 10.1109/ICCNC.2019.8685580

  • Peng G. C. A. Nunes M. B. & Zheng L. (2017). Impacts of low citizen awareness and usage in smart city services: The case of London’s smart parking system Information Systems and e-Business Management 15(4) 845-876. doi: 10.1007/s10257-016-0333-8

    • Crossref
    • Export Citation
  • Perboli G. De Marco A. Perfetti F. & Marone M. (2014). A new Taxonomy of Smart City Projects. Transportation Research Procedia 3 470-478. 10.1016/j. trpro.2014.10.028

    • Crossref
    • Export Citation
  • Perng S. Kitchin R. & Mac Donncha D. (2018). Hackathons entrepreneurial life and the making of smart cities. Geoforum 97 189-197. doi: 10.1016/j.geoforum.2018.08.024

    • Crossref
    • Export Citation
  • Petrova S. & Prodromidou A. (2019). Everyday politics of austerity: Infrastructure and vulnerability in times of crisis. Environment and Planning C: Politics and Space doi.org/10.1177/2399654419831293

  • Pham T. T. & Phan C. T. (2018). Risk management: Awareness identification and mitigation in public private partnerships of technical infrastructure projects in da nang. Proceedings 2018 4th International Conference on Green Technology and Sustainable Development GTSD 18-23.

  • Proseedmag (2017). Smart city – wady i zalety Smart city - advantages and disadvantages Retrieved from https://proseedmag.pl/gospodarka/smart-city-wady-zalety

  • Putra H. Y. Putra H. & Kurniawan N. B. (2019). Big data analytics algorithm data type and tools in smart city: A systematic literature review. International Conference on Information Technology Systems and Innovation ICITSI 2018 - Proceedings 474-478. doi: 10.1109/ICITSI.2018.8696051

  • Rath M. & Pattanayak B. (2019). Technological improvement in modern health care applications using internet of things (IoT) and proposal of novel health care approach. International Journal of Human Rights in Healthcare 12(2) 148-162. doi: 10.1108/IJHRH-01-2018-0007

    • Crossref
    • Export Citation
  • Ravetz J. (2017). From ‘smart’ cities to ‘wise’: synergistic pathways for collective urban intelligence. JPI Urban Europe - Urban Transitions Pathways Symposium. Retrieved from https://jpi-urbaneurope.eu/app/uploads/2017/04/Ravetz_From-smart-to-wise.pdf

  • Reddy D. V. S. & Mehta R. V. K. (2019). Smart traffic management system for smart cities using reinforcement learning algorithm. International Journal of Recent Technology and Engineering 7(6) 12-15.

  • Sadeghpour S. Jaseemuddin M. & Kharbish S. (2019). Cluster-based cache placement in 5G network. Proceedings - 20th International Conference on High Performance Computing and Communications 16th International Conference on Smart City and 4th International Conference on Data Science and Systems HPCC/SmartCity/DSS 2018 457-465. doi: 10.1109/HPCC/SmartCity/DSS.2018.00091

  • Safiullin A. Krasnyuk L. & Kapelyuk Z. (2019). Integration of industry 4.0 technologies for “smart cities” development. IOP Conference Series: Materials Science and Engineering 497(1).

  • Schaffers H. Ratti C. & Komninos N. (2012). Special issue on smart applications for smart cities - new approaches to innovation: Guest editors’ introduction. Journal of Theoretical and Applied Electronic Commerce Research 7(3) 2-5. doi: 10.4067/S0718-18762012000300005

  • Schmitt S. Kandah F. I. & Brownell D. (2019). Intelligent threat hunting in software-defined networking IEEE International Conference on Consumer Electronics ICCE 2019. doi: 10.1109/ICCE.2019.8661952

  • Scorţar L. M. Vereş Vincenţiu M. M. & Anamaria M. (2010). Solid waste disposal problems in Arieş urban community from Cluj county. Polish Journal of Management Studies 2(2) 116-123.

  • Sedighian Kashi S. (2019). Area coverage of heterogeneous wireless sensor networks in support of internet of things demands. Computing 101(4) 363-385. doi: 10.1007/s00607-018-0623-8

    • Crossref
    • Export Citation
  • Sharma G. & Kalra S. (2019). Advanced multi-factor user authentication scheme for E-governance applications in smart cities. International Journal of Computers and Applications 41(4) 312-327. doi: 10.1080/1206212X.2018.1445352

    • Crossref
    • Export Citation
  • Shin D. H. (2009). Ubiquitous city: Urban technologies urban infrastructure and urban informatics Journal of Information Science 35(5) 515-526. doi: 10.1177/0165551509100832

    • Crossref
    • Export Citation
  • Siderska J. & Jadaa K. S. (2018). Cloud manufacturing: a service-oriented manufacturing paradigm. A review paper Engineering Management in Production and Services 10(1) 22-31. doi: 10.1515/emj-2018-0002

    • Crossref
    • Export Citation
  • Sikora-Fernandez D. (2017). Smart cities w Polsce to nadal utopia Smart cities in Poland are still a utopia Retrieved from http://urbnews.pl/smart-cities-polsce-nadal-utopia/

  • Sittón-Candanedo I. Alonso R. S. Corchado J. M. Rodríguez-González S. & Casado-Vara R. (2019). A review of edge computing reference architectures and a new global edge proposal. Future Generation Computer Systems 99 278-294. doi: 10.1016/j.future.2019.04.016

    • Crossref
    • Export Citation
  • Sittón-Candanedo I. Alonso R. S. Corchado J. M. Rodríguez-González S. & Casado-Vara R. (2019). A review of edge computing reference architectures and a new global edge proposal. Future Generation Computer Systems 99 278-294. doi: 10.1016/j.future.2019.04.016

    • Crossref
    • Export Citation
  • Sodiq A. Baloch A. A. B. Khan S. A. Sezer N. Mahmoud S. Jama M. & Abdelaal A. (2019). Towards modern sustainable cities: Review of sustainability principles and trends. Journal of Cleaner Production 227 972-1001. doi: 10.1016/j.jclepro.2019.04.106

    • Crossref
    • Export Citation
  • Sou G. (2019). Household self-blame for disasters: Responsibilisation and (un)accountability in decentralised participatory risk governance. Disasters 43(2) 289-310. doi: 10.1111/disa.12319

    • Crossref
    • PubMed
    • Export Citation
  • Sproull L. & Patterson J. F. (2004). Making information cities livable Communications of the ACM 47(2) 33-37. doi: 10.1145/966389.966412

    • Crossref
    • Export Citation
  • Stawasz D. & Sikora-Fernandez D. (2015). Zarządzanie w polskich miastach zgodnie z koncepcją smart city Management in Polish cities according to the smart city concept Warsaw Poland: Placet.

  • Stawasz D. & Sikora-Fernandez D. (2016). Koncepcja smart city na tle procesów i uwarunkowań rozwoju współczesnych miast The smart city concept against the background of processes and conditions for the development of modern cities Łódź Poland: Wydawnictwo Uniwersytetu Łodzkiego.

  • Stolfi F. & Sussman G. (2001). Telecommunications and transnationalism: the polarization of social space Information Society 17(1) 49-62. doi: 10.1080/019722401750067423

    • Crossref
    • Export Citation
  • Streitz N. (2017). Re-defining the “smart everything” paradigm: Towards reconciling humans and technology. Proceedings of the International Conference on ICT Society and Human Beings 2017 - Part of the Multi Conference on Computer Science and Information Systems 2017.

  • Szołtysek J. & Otręba R. (2015). Zarządzanie miastem i jego wpływ na jakość życia mieszkańców miast województwa śląskiego – doniesienie badawcze [City management and its influence on the quality of life of city dwellers of the Silesian Voivodeship - research report]. Problemy Rozwoju Miast Kwartalnik Naukowy Instytutu Rozwoju Miast 12(2) 37-42.

  • Szpilko D. (2015). The Future of Tourism Development in the Podlaskie Voivodeship. Procedia – Social and Behavioral Sciences 213 977-984. doi: 10.1016/j.sbspro.2015.11.514

    • Crossref
    • Export Citation
  • Szpilko D. (2017). Tourism Supply Chain – overview of selected literature. Procedia Engineering 182 687-693 doi: 10.1016/j.proeng.2017.03.180

    • Crossref
    • Export Citation
  • Tan M. (1999). Creating the digital economy: strategies and perspectives from Singapore International Journal of Electronic Commerce 3(3) 105-122.

    • Crossref
    • Export Citation
  • Targowski A. S. (1990). Strategies and architecture of the electronic global village Information Society 17(3) 187-202. doi: 10.1080/01972243.1990.9960094

  • Tay K. -. K. C. Supangkat S. H. Cornelius G. & Arman A. A. (2018). The SMART initiative and the Garuda smart city framework for the development of smart cities Proceeding - 2018 International Conference on ICT for Smart Society: Innovation Toward Smart Society and Society 5.0 ICISS 2018. doi: 10.1109/ICTSS.2018.8549961

  • Tenney M. Hall G. B. & Sieber R. E. (2019). Use the below title: A crowd sensing system identifying geotopics and community interests from user-generated content. International Journal of Geographical Information Science. doi:10.1080/13658816.2019.15 91413

  • Timmerman R. Marshall S. & Zhang Y. (2019). Towards socially sustainable urban design: Analysing acto R-area relations linking micro-morphology and micro-democracy. International Journal of Sustainable Development and Planning 14(1) 20-30. doi: 10.2495/SDP-V14-N1-20-30

    • Crossref
    • Export Citation
  • Tomaszewska E. J. & Florea A. (2018). Urban smart mobility in the scientific literature - bibliometric analysis. Engineering Management in Production and Services 10(2) 41-56. doi: 10.2478/emj-2018-0010

    • Crossref
    • Export Citation
  • Trencher G. (2019). Towards the smart city 2.0: Empirical evidence of using smartness as a tool for tackling social challenges. Technological Forecasting and Social Change 142 117-128. doi: 10.1016/j.techfore.2018.07.033

    • Crossref
    • Export Citation
  • United Nations Department of Economic and Social Affairs (2018). World Urbanization Prospects 2018: Key Facts New York.

  • Vaidya B. & Mouftah H. T. (2019). Automated reservation mechanism for charging connected and autonomous EVs in smart cities. IEEE Vehicular Technology Conference 2018-August. doi: 10.1109/VTCFall.2018.8690905

  • Vhaduri S. Poellabauer C. Striegel A. Lizardo O. & Hachen D. (2018). Discovering places of interest using sensor data from smartphones and wearables. IEEE SmartWorld Ubiquitous Intelligence and Computing Advanced and Trusted Computed Scalable Computing and Communications Cloud and Big Data Computing Internet of People and Smart City Innovation SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI 2017 - Conference Proceedings 1-8. doi: 10.1109/UIC-ATC.2017.8397495

  • Vitunskaite M. He Y. Brandstetter T. & Janicke H. (2019). Smart cities and cyber security: Are we there yet? A comparative study on the role of standards third party risk management and security ownership. Computers and Security 83 313-331

    • Crossref
    • Export Citation
  • Vranken T. Sliwa B. Wietfeld C. & Schreckenberg M. (2019). Performance comparison of dynamic vehicle routing methods for minimizing the global dwell time in upcoming smart cities. IEEE Vehicular Technology Conference 2018-August. doi: 10.1109/VTC-Fall.2018.8690655

  • Wang T. Liang Y. Jia W. Arif M. Liu A. & Xie M. (2019). Coupling resource management based on fog computing in smart city systems. Journal of Network and Computer Applications 135 11-19. doi: 10.1016/j.jnca.2019.02.021

    • Crossref
    • Export Citation
  • Wei Y. Wang Y. Chang Y. Shi B. & Shao K. (2019). Research on the construction of “u-smart transportation system” under artificial intelligence technology. IOP Conference Series: Materials Science and Engineering 490(4). doi: 10.1088/1757-899X/490/4/042002

  • What are the disadvantages of smart cities? Retrieved from https://www.quora.com/What-are-the-disadvantages-of-smart-cities

  • Xie Q. & Hwang L. (2019). Security enhancement of an anonymous roaming authentication scheme with two-factor security in smart city. Neurocomputing 347 131-138. doi: 10.1016/j.neucom.2019.03.020

    • Crossref
    • Export Citation
  • Xie Y. Gupta J. Li Y. & Shekhar S. (2019). Transforming smart cities with spatial computing IEEE International Smart Cities Conference ISC2 2018. doi: 10.1109/ISC2.2018.8656800

  • Yang Z. & Zhu M. (2019). A dynamic prediction model of real-time link travel time based on traffic big data Proceedings - 2019 International Conference on Intelligent Transportation Big Data and Smart City ICITBS 2019 330-333. doi: 10.1109/ICITBS.2019.00087

  • Yu M. Yang Y. Chen F. Zhu F. Qu J. & Zhang S. (2019). Response of agricultural multifunctionality to farmland loss under rapidly urbanizing processes in yangtze river delta china Science of the Total Environment 66 1-11.

  • Zanella A. Bui N. Castellani A. Vangelista L. & Zorzi M. (2014). Internet of things for smart cities IEEE Internet of Things Journal 1(1) 22-32. doi: 10.1109/JIOT.2014.2306328

    • Crossref
    • Export Citation
  • Zhang Y. & Pu H. (2019). Environmental indicators of sustainable computing applications for smart city. Concurrency Computation 31(9). doi: 10.1002/cpe.4751

  • Zhao L. Wang J. Liu J. & Kato N. (2019). Routing for crowd management in smart cities: A deep reinforcement learning perspective. IEEE Communications Magazine 57(4) 88-93. doi: 10.1109/MCOM.2019.1800603

    • Crossref
    • Export Citation
  • Zheng H. Chang W. & Wu J. (2019). Traffic flow monitoring systems in smart cities: Coverage and distinguishability among vehicles. Journal of Parallel and Distributed Computing 127 224-237. doi: 10.1016/j. jpdc.2018.07.008

    • Crossref
    • Export Citation
  • Zhu Z. & Liang W. (2019). Congestion control strategy of distance education system based on TCP protocol Proceedings - 2019 International Conference on Intelligent Transportation Big Data and Smart City ICITBS 2019 485-488. doi: 10.1109/ICITBS.2019.00123

  • Zhuhadar L. Thrasher E. Marklin S. & de Pablos P. O. (2017). The next wave of innovation - review of smart cities intelligent operation systems. Computers in Human Behavior 66 273-281. doi: 10.1016/j. chb.2016.09.030

    • Crossref
    • Export Citation

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aguilar A. G. & López F. M. (2016). Espacios de pobreza en la periferia urbana y suburbios interiores de la Ciudad de México.Las desventajas acumuladas [Poverty spaces in the urban periphery and inner suburbs of the Mexico city accumulated disadvantages]. Eure 42(125) 5-29. doi: 10.4067/S0250-71612016000100001

  • Alam S. S. Islam A. J. Hasan M. M. Rafid M. N. M. Chakma N. & Imtiaz M. N. (2018). Design and development of a low-cost IoT based environmental pollution monitoring system. 4th International Conference on Electrical Engineering and Information and Communication Technology iCEEiCT652-656.

  • Alchihabi A. Dervis A. Ever E. & Al-Turjman F. (2019). A generic framework for optimizing performance metrics by tuning parameters of clustering protocols in WSNs. Wireless Networks 25(3) 1031-1046. doi: 10.1007/s11276-018-1665-8

    • Crossref
    • Export Citation
  • Alduais N. A. M. Abdullah I. & Jamil A. (2019). An efficient data collection algorithm for wearable / mobile tracking system in IoT /WSN. Electrical Power Electronics Communications Controls and Informatics Seminar EECCIS 2018 250-254. doi: 10.1109/EECCIS.2018.8692815

  • Allam Z. & Dhunny Z. A. (2019). On big data artificial intelligence and smart cities. Cities 89 80-91. doi: 10.1016/j.cities.2019.01.032

    • Crossref
    • Export Citation
  • Allwinkle S. & Cruickshank P. (2011) Creating Smarter Cities: An Overview. Journal of Urban Technology 18(2) 1-16. doi: 10.1080/10630732.2011.601103

    • Crossref
    • Export Citation
  • Ameer S. & Shah M. A. (2019). Exploiting big data analytics for smart urban planning IEEE Vehicular Technology Conference 2018-August. doi: 10.1109/ICSPCS.2018.8631726

  • Amritha P. K. & Kumar P. P. A. (2019). Productive landscapes as a sustainable organic waste management option in urban areas. Environment Development and Sustainability 21(2) 709-726. doi: 10.1007/s10668-017-0056-0

    • Crossref
    • Export Citation
  • Azhdari G. Lagzian M. Shirazi A. & Fayyazi M. (2019). Electronic human resource management adoption model in knowledge base small and medium enterprises. Iranian Journal of Information Processing Management 34(2) 535-556. doi: 10.19166/derema. v13i1.491

  • Bashynska I. & Dyskina A. (2018). The overview-analytical document of the international experience of building smart city. Business: Theory and Practice 19 228-241. doi: 10.3846/btp.2018.23

  • Bibri S. E. (2019). On the sustainability of smart and smarter cities in the era of big data: An interdisciplinary and transdisciplinary literature review. Journal of Big Data 6(1). doi: 10.1186/s40537-019-0182-7

  • Binti Adnan S. N. N. Awang J. Rahman Z. A. Ibrahim M. Long A. S. Kamarzaman H. & Mohamed S. B. (2018). The ‘umran al ‘alam theory’s approach to the social smart city ethical. International Journal of Civil Engineering and Technology 9(7) 269-277.

  • Bjørgen A. Seter H. Kristensen T. & Pitera K. (2019). The potential for coordinated logistics planning at the local level: A Norwegian in-depth study of public and private stakeholders Journal of Transport Geography 76 34-41. doi: 10.1016/j.jtrangeo.2019.02.010

    • Crossref
    • Export Citation
  • Bugge M. M. Fevolden A. M. & Klitkou A. (2019). Governance for system optimization and system change: The case of urban waste. Research Policy 48(4) 1076-1090. doi: 10.1016/j.respol.2018.10.013

    • Crossref
    • Export Citation
  • Bui K. N. & Jung J. J. (2019). Computational negotiation-based edge analytics for smart objects. Information Sciences 480 222-236. doi: 10.1016/j.ins.2018.12.046

    • Crossref
    • Export Citation
  • Cantas M. R. Kavas O. Tamilarasan S. Gelbal S. Y. & Guvenc L. (2019). Use of hardware in the loop (HIL) simulation for developing connected autonomous vehicle (CAV) applications SAE Technical Papers 2019-April. doi: 10.4271/2019-01-1063

  • Cao W. Zhang Y. & Qian P. (2019). The effect of innovation-driven strategy on green economic development in China-an empirical study of smart cities. International Journal of Environmental Research and Public Health 16(9). doi: 10.3390/ijerph16091520

    • PubMed
    • Export Citation
  • Caparros-Midwood D. Dawson R. & Barr S. (2019). Low carbon low risk low density: Resolving choices about sustainable development in cities. Cities 89 252-267. doi: 10.1016/j.cities.2019.02.018

    • Crossref
    • Export Citation
  • Caragliu A. Del Bo Ch. & Nijkamp P. (2011). Smart Cities in Europe. Journal of Urban Technology 18(2) 65-82. doi: 10.1080/10630732.2011.601117

    • Crossref
    • Export Citation
  • de Castro Pena J. C. de Assis J. C. da Silva R. A. Honda L. K. Pagani M. I. & Ribeiro M. C. (2017). Beyond the mining pit: The academic role in social deliberation for participatory environmental planning Perspectives in Ecology and Conservation 15(3) 194-198. doi: 10.1016/j.pecon.2017.06.006

    • Crossref
    • Export Citation
  • Carè S. Trotta A. Carè R. & Rizzello A. (2018). Crowdfunding for the development of smart cities. Business Horizons 61(4) 501-509. doi: 10.1016/j.bush-or.2017.12.001

    • Crossref
    • Export Citation
  • Certomà C. & Rizzi F. (2017). Crowdsourcing processes for citizen-driven governance In C. Certomà M. Dyer L. Pocatilu F. Rizzi (Eds.) Citizen Empowerment and Innovation in the Data-Rich City (pp. 57-77). Cham Switzerland: Springer Tracts in Civil Engineering. doi:10.1007/978-3-319-47904-0_4

    • Crossref
    • Export Citation
  • Chakrabarty A. (2019). Smart mischief: An attempt to demystify the smart cities craze in India. Environment and Urbanization 31(1) 193-208. doi: 10.1177/0956247818769234

    • Crossref
    • Export Citation
  • Chammas M. Makhoul A. & Demerjian J. (2019). An efficient data model for energy prediction using wireless sensors. Computers and Electrical Engineering 76 249-257

    • Crossref
    • Export Citation
  • Chen M. (2019). Modeling and simulation analysis of road network based on VISSIM Proceedings - 2019 International Conference on Intelligent Transportation Big Data and Smart City ICITBS 2019 32-35. doi: 10.1109/ICITBS.2019.00017

  • Chondrogiannis E. Andronikou V. Karanastasis E. & Varvarigou T. (2019). A novel approach for clinical data harmonization IEEE International Conference on Big Data and Smart Computing BigComp 2019 – Proceedings. doi: 10.1109/BIGCOMP.2019.8679239

  • Chong M. Habib A. Evangelopoulos N. & Park H. W. (2018). Dynamic capabilities of a smart city: An innovative approach to discovering urban problems and solutions. Government Information Quarterly 35(4) 682-692. doi: 10.1016/j.giq.2018.07.005

    • Crossref
    • Export Citation
  • Chourabi H. Nam T. Walker S. Gil-Garcı´a J. Mellouli S. Nahon K. Pardo T. A. & Scholl H. (2012). Understanding Smart Cities: An Integrative Framework. Proceedings of 45th Hawaii International Conference on Systems Science 2289-2297.

  • Cleophas C. Cottrill C. Ehmke J. F. & Tierney K. (2019). Collaborative urban transportation: Recent advances in theory and practice. European Journal of Operational Research 273(3) 801-816. doi: 10.1016/j.ejor.2018.04.037

    • Crossref
    • Export Citation
  • Deng J. (2019). The teaching reform of higher vocational business English course informationization on the background of education informationization 2.0. Proceedings - 2019 International Conference on Intelligent Transportation Big Data and Smart City ICITBS 2019 324-326. doi: 10.1109/ICITBS.2019.00085

  • Dlamini S. Simatele M. D. & Serge Kubanza N. (2019). Municipal solid waste management in South Africa: From waste to energy recovery through waste-to-energy technologies in Johannesburg Local Environment 24(3) pp. 249-257. doi: 10.1080/13549839.2018.1561656

    • Crossref
    • Export Citation
  • Dobrzyński M. Dziekoński K. & Jurczuk A. (2013). Analiza bibliometryczna artykułów w “Gospodarce Materiałowej i Logistyce” z lat 2010-2012 [Bibliometric analysis of articles in “Materials Management and Logistics” from the years 2010-2012]. Gospodarka Materiałowa i Logistyka 12 24-31.

  • Dohler M. Vilajosana I. Vilajosana X. & Llosa J. (2011). Smart Cities: An action plan. Proceedings of Barcelona Smart Cities Congress Spain Barcelona 1-6.

  • van Eck N.J. & Waltman L. (2011). VOSviewer Manual. Manual for VOSviewer version 1.3.0. software documentation.

  • Ejdys J. (2014). Future oriented strategy for SMEs. Procedia – Social and Behavioral Sciences 156 8-12. doi: 10.1016/j.sbspro.2014.11.110

    • Crossref
    • Export Citation
  • Ejdys J. Gudanowska A. Halicka K. Kononiuk A. Magruk A. Nazarko J. Nazarko L. Szpilko D. & Widelska U. (2019). Foresight in higher education institutions: evidence from Poland. Foresight and STI Governance 13(1) 77-89. doi: 10.17323/2500-2597.2019.1.77.89

    • Crossref
    • Export Citation
  • Elzen B. Geels F. W. & Green K. (2004). Transitions to sustainability: lessons learned and remaining challenges. In B. Elzen F. W. Geels & K. Green (Eds.) System Innovation and the Transition to Sustainability (pp. 282-300). United Kingdom Cheltenham: Edward Elgar Publishing.

  • Fang C. C. & Lai C. (2018). Application for the geriatrics in cognitive city: Prevention of lost patient with dementia Proceedings – 2018 1st International Cognitive Cities Conference IC3 28-31.

  • Faramehr S. Hemida H. & Fujiyama T. (2019). Evaluation of the impact of urban water systems on railways: The scenario of track flooding caused by a water main burst. Proceedings of the Institution of Mechanical Engineers Part F: Journal of Rail and Rapid Transit. doi: 10.1177/0954409719830184

  • Fernández Vilas A. Díaz Redondo R. P. & Ben Khalifa M. (2019). Analysis of crowds’ movement using Twitter. Computational Intelligence 35(2) pp. 448-472. doi: 10.1111/coin.12205

    • Crossref
    • Export Citation
  • Fernandez-Guell J. M. Guzmán-Arana S. Collado-Lara M. & Fernandez-Anez V. (2016). How to Incorporate Urban Complexity Diversity and Intelligence into Smart Cities Initiatives. Smart Cities: First International Conference Smart-CT 2016 Málaga Spain June 15-17 85-94.

  • Ferrer J. López-Ibáñez M. & Alba E. (2019). Reliable simulation-optimization of traffic lights in a real-world city. Applied Soft Computing Journal 78 697-711. doi: 10.1016/j.asoc.2019.03.016

    • Crossref
    • Export Citation
  • Fietkiewicz K. J. Mainka A. & Stock W. G. (2017). eGovernment in cities of the knowledge society. An empirical investigation of Smart Cities’ governmental websites. Government Information Quarterly 34(1) 75-83. doi: /10.1016/j.giq.2016.08.003

    • Crossref
    • Export Citation
  • Firdausiyah N. Taniguchi E. & Qureshi A. G. (2019). Modeling city logistics using adaptive dynamic programming based multi-agent simulation. Transportation Research Part E: Logistics and Transportation Review 125 74-96. doi: 10.1016/j. tre.2019.02.011

    • Crossref
    • Export Citation
  • Garg S. Singh A. Kaur K. Aujla G. S. Batra S. Kumar N. & Obaidat M. S. (2019). Edge computing-based security framework for big data analytics in VANETs. IEEE Network 33(2) 72-81. doi: 10.1109/MNET.2019.1800239

    • Crossref
    • Export Citation
  • Gil-Garcia J. R. Pardo T. A. Nam T. (2015). A Comprehensive View of the 21st Century City: Smartness as Technologies and Innovation in Urban Contexts. In Gil-Garcia J. R. Pardo T. & Nam T. (Eds.) Smarter as the New Urban Agenda. Public Administration and Information Technology (pp. 1-19). Cham Switzerland: Springer.

  • Godoi F. N. Denardin G. W. & Barriquello C. H. (2019). Reliability enhancement of packet delivery in multi-hop wireless sensor network. Computer Networks 153 86-91

    • Crossref
    • Export Citation
  • Gonzaga E. (2019). Precarious nostalgia in the tropical smart city: Transmedia memory urban informatics and the singapore golden jubilee. Cultural Studies 33(1) 147-169. doi: 10.1080/09502386.2018.1428644

    • Crossref
    • Export Citation
  • Greenfield E. A. (2018). Age-friendly initiatives social inequalities and spatial justice Hastings Center Report 48 41-45. doi: 10.1002/hast.912

    • Crossref
    • Export Citation
  • Grimaldi D. Fernandez V. & Carrasco C. (2019). Heuristic for the localization of new shops based on business and social criteria. Technological Forecasting and Social Change 142 249-257. doi: 10.1016/j.techfore.2018.07.034

    • Crossref
    • Export Citation
  • Gudanowska A. E. (2015). Tworzenie mapy wiedzy opartej na tematyce projektów badawczo – rozwojowych na przykładzie województwa podlaskiego [Creating knowledge maps based on the themes of R&D projects on the example of the Podlaskie region]. Economics and Management 7(1) 257-270. doi: 10.12846/j.em.2015.01.16

  • Gudanowska A. E. (2017). A map of current research trends within technology management in the light of selected literature. Management and Production Engineering Review 8(1) 78-88. doi: 10.1515/mper2017-0009

    • Crossref
    • Export Citation
  • Guo J. Ma J. Li X. Zhang J. & Zhang T. (2017). An attribute-based trust negotiation protocol for D2D communication in smart city balancing trust and privacy Journal of Information Science and Engineering 33(4) 1007-1023. doi: 10.6688/JISE.2017.33.4.10

  • Halicka K. (2017). Main concepts of technology analysis in the light of the literature on the subject. Procedia Engineering 182 291-298 doi: 10.1016/j.proeng.2017.03.196

    • Crossref
    • Export Citation
  • Halmy M. W. A. (2019). Assessing the impact of anthropogenic activities on the ecological quality of arid mediterranean ecosystems (case study from the northwestern coast of Egypt). Ecological Indicators 101 992-1003. doi: 10.1016/j.ecolind.2019.02.005

    • Crossref
    • Export Citation
  • Heaton J. & Parlikad A. K. (2019). A conceptual framework for the alignment of infrastructure assets to citizen requirements within a smart cities framework. Cities 90 32-41. doi: 10.1016/j. cities.2019.01.041

    • Crossref
    • Export Citation
  • van Holm E. J. (2019). Unequal cities unequal participation: The effect of income inequality on civic engagement. American Review of Public Administration 49(2) 135-144. doi: 10.1177/0275074018791217

    • Crossref
    • Export Citation
  • Horgan D. & Dimitrijević B. (2019). Frameworks for citizens participation in planning: From conversational to smart tools. Sustainable Cities and Society 48. doi:10.1016/j.scs.2019.101550

  • Hu S. & Jiang T. (2019). Artificial intelligence technology challenges patent laws. Proceedings - 2019 International Conference on Intelligent Transportation Big Data and Smart City ICITBS 2019 241-244. doi: 10.1109/ICITBS.2019.00064

  • Huang H. Lu Z. Peng R. Feng Z. Xuan X. Hung P. C. K. & Huang S. C. (2019). Efficiently querying large process model repositories in smart city cloud workflow systems based on quantitative ordering relations. Information Sciences 495 100-115. doi: 10.1016/j.ins.2019.04.058

    • Crossref
    • Export Citation
  • Huang K. Zhang X. S. & Wang X. F. (2017) Block-level message-locked encryption with polynomial commitment for IoT data. Journal of Information Science and Engineering 33(4) 891-905. doi: 10.6688/JISE.2017.33.4.2

  • Indrawati I. Azkalhaq N. & Amani H. (2018). Indicators to measure smart economy: An Indonesian perspective ACM International Conference Proceeding Series 173-179. doi: 10.1145/3278252.3278278

  • Ismagilova E. Hughes L. Dwivedi Y. K. & Raman K. R. (2019). Smart cities: Advances in research – An information systems perspective. International Journal of Information Management 47 88-100. doi: 10.1016/j. ijinfomgt.2019.01.004

    • Crossref
    • Export Citation
  • Jan M. A. Zhang W. Usman M. Tan Z. Khan F. & Luo E. (2019). SmartEdge: An end-to-end encryption framework for an edge-enabled smart city application. Journal of Network and Computer Applications 137 1-10. doi: 10.1016/j. jnca.2019.02.023

    • Crossref
    • Export Citation
  • Jarocka M. & Wang H. (2018). Definition and classification criteria of logistics services for elderly. Engineering Management in Production and Services 10(4) 65-75. doi: 10.2478/emj-2018-0023

    • Crossref
    • Export Citation
  • Jayantha W. M. Qian Q. K. & Yi C. O. (2018). Applicability of ‘Aging in place’ in redeveloped public rental housing estates in hong kong. Cities 83 140-151. doi: 10.1016/j.cities.2018.06.016

    • Crossref
    • Export Citation
  • Ji W. Xu J. Qiao H. Zhou M. & Liang B. (2019). Visual IoT: Enabling internet of things visualization in smart cities. IEEE Network 33(2) 102-110. doi: 10.1109/MNET.2019.1800258

    • Crossref
    • Export Citation
  • Julian V. & Botti V. (2019). Multi-agent systems. Applied Sciences 9(7). doi: 10.3390/app9071402

  • Juwet G. & Ryckewaert M. (2018). Energy transition in the nebular city: Connecting transition thinking metabolism studies and urban design. Sustainability 10(4). doi: 10.3390/su10040955

  • Kamel Boulos M. N. Peng G. & Vopham T. (2019). An overview of GeoAI applications in health and healthcare. International Journal of Health Geographics 18(1).

    • PubMed
    • Export Citation
  • Khadse V. Mahalle P. N. & Biraris S. V. (2019). An empirical comparison of supervised machine learning algorithms for internet of things data. Proceedings - 2018 4th International Conference on Computing Communication Control and Automation ICCUBEA 2018. doi: 10.1109/ICCUBEA.2018.8697476

  • Kong X. Li M. Li J. Tian K. Hu X. & Xia F. (2019). CoPFun: An urban co-occurrence pattern mining scheme based on regional function discovery. World Wide Web 22(3) 1029-1054. doi: 10.1007/s11280-018-0578-x

    • Crossref
    • Export Citation
  • Kosheleva N. E. Vlasov D. V. Korlyakov I. D. & Kasimov N. S. (2018). Contamination of urban soils with heavy metals in Moscow as affected by building development. Science of the Total Environment 636 854-863. doi: 10.1016/j.scitotenv.2018.04.308

    • Crossref
    • Export Citation
  • Kovács Z. Farkas Z. J. Egedy T. Kondor A. C. Szabó B. Lennert J. Baka D. & Kohán B. (2019). Urban sprawl and land conversion in post-socialist cities: The case of metropolitan Budapest. Cities 92 71-81. doi: 10.1016/j.cities.2019.03.018

    • Crossref
    • Export Citation
  • Krämer M. Frese S. & Kuijper A. (2019). Implementing secure applications in smart city clouds using microservices. Future Generation Computer Systems 99 308-320. doi: 10.1016/j.future.2019.04.042

    • Crossref
    • Export Citation
  • Kuang A. Zhang S. & Yang H. (2019). Research on signal control method of isolated intersection based on the queuing length reliability. Proceedings - 2019 International Conference on Intelligent Transportation Big Data and Smart City ICITBS 2019 533-535. doi: 10.1109/ICITBS.2019.00133

  • Kumar S. Lal N. & Chaurasiya V. K. (2019). An energy efficient IPv6 packet delivery scheme for industrial IoT over G.9959 protocol based wireless sensor network (WSN). Computer Networks 154 79-87

    • Crossref
    • Export Citation
  • Kundu D. (2019). Blockchain and trust in a smart city. Environment and Urbanization ASIA 10(1) 31-43. doi: 10.1177/0975425319832392

    • Crossref
    • Export Citation
  • Lakshmanaprabu S. K. Shankar K. Sheeba Rani S. Abdulhay E. Arunkumar N. Ramirez G. & Uthayakumar J. (2019). An effect of big data technology with ant colony optimization-based routing in vehicular ad hoc networks: Towards smart cities. Journal of Cleaner Production 217 584-593. doi: 10.1016/j. jclepro.2019.01.115

    • Crossref
    • Export Citation
  • Lanjouw P. & Marra M. R. (2018). Urban poverty across the spectrum of Vietnam’s towns and cities World Development 110 295-306. doi: 10.1016/j.worlddev.2018.06.011

    • Crossref
    • Export Citation
  • Lee J. H. Hancock M. G. & Hu M.-Ch. (2014). Towards an effective framework for building smart cities: Lessons from Seoul and San Francisco. Technological Forecasting & Social Change 89 80-99. doi: 10.1016/j.techfore.2013.08.033

    • Crossref
    • Export Citation
  • Li L. (2019). Evaluation model of education service quality satisfaction in colleges and universities dependent on classification attribute big data feature selection algorithm Proceedings - 2019 International Conference on Intelligent Transportation Big Data and Smart City ICITBS 2019 645-649. doi: 10.1109/ICITBS.2019.00160

  • Li X. Zhu S. Gelbal S. Y. Cantas M. R. Aksun Guvenc B. & Guvenc L. (2019). A unified scalable and replicable approach to development implementation and HIL evaluation of autonomous shuttles for use in a smart city. SAE Technical Papers 2019-April. doi: 10.4271/2019-01-0493

  • Lombardi P. Giordano S. Farouh H. & Yousef W. (2012). Modelling the Smart City Performance Innovation: The European Journal of Social Science Research 25(2) 137-149. doi: 10.1080/13511610.2012.660325

  • Luo Y. Du X. & Sun Y. (2019). Survey on real-time anomaly detection technology for big data streams. Proceedings of the International Conference on Anti-Counterfeiting Security and Identification ASID 2018-November 26-30. doi: 10.1109/ICASID.2018.8693216

  • de M. Del Esposte A. Santana E. F. Z. Kanashiro L. Costa F. M. Braghetto K. R. Lago N. & Kon F. (2019). Design and evaluation of a scalable smart city software platform with large-scale simulations. Future Generation Computer Systems 93 427-441. doi: 10.1016/j.future.2018.10.026

    • Crossref
    • Export Citation
  • Ma B. Li H. Wei Y. D. Xue D. & Jiang J. (2018). Spatial structure and mechanism of urban poverty in Xi’an city. Acta Geographica Sinica 73(6) 1018-1032. doi: 10.11821/dlxb201806003

  • Ma R. & Lam P. T. I. (2019). Investigating the barriers faced by stakeholders in open data development: A study on Hong Kong as a “smart city”. Cities 92 36-46. doi: 10.1016/j.cities.2019.03.009

    • Crossref
    • Export Citation
  • Mahmoud H. & Divigalpitiya P. (2019). Spatiotemporal variation analysis of urban land expansion in the establishment of new communities in Upper Egypt: A case study of New Asyut city Egyptian Journal of Remote Sensing and Space Science 22(1) 59-66. doi: 10.1016/j.ejrs.2018.03.006

    • Crossref
    • Export Citation
  • Manchester H. & Cope G. (2019). Learning to be a smart citizen. Oxford Review of Education 45(2) 224-241. doi: 10.1080/03054985.2018.1552582

    • Crossref
    • Export Citation
  • Mannan S. & Callenes-Sloan J. (2019). Treety: A data-driven approach to urban canopy development IEEE International Smart Cities Conference ISC2 2018. doi:10.1109/ISC2.2018.8656956

  • Manville C. Cochrane G. Cave J. Millard J. Pederson J. K. Thaarup R. K. Liebe A. Wissner M. Massink R. & Kotterink B. (2014). Mapping Smart Cities in the EU. Study Directorate-General for Internal Policies Policy Department A: Economic and Scientific Policy European Parliament Brussels.

  • Marcuzzi F. & Tonello A. M. (2019). Artificial-intelligence-based performance enhancement of the G3-PLC LOADng routing protocol for sensor networks. Proceedings of the 2019 IEEE International Symposium on Power Line Communications and its Applications ISPLC 2019 114-119. doi: 10.1109/ISPLC.2019.8693390

  • Marrero D. Macías E. Suárez Á. Santana J. A. & Mena V. (2019). Energy saving in smart city wireless backbone network for environment sensors. Mobile Networks and Applications 24(2) 700-711. doi: 10.1007/s11036-016-0786-5

    • Crossref
    • Export Citation
  • Mattoni B. Gugliermetti F. Bisegna F. (2015). A multilevel method to assess and design the renovation and integration of Smart Cities. Sustainable Cities and Society 15 105-119. doi: 10.1016/j. scs.2014.12.002

    • Crossref
    • Export Citation
  • Mattos D. M. F. Velloso P. B. & Duarte O. C. M. B. (2019). An agile and effective network function virtualization infrastructure for the internet of things. Journal of Internet Services and Applications 10(6). doi: 10.1186/s13174-019-0106-y

  • Matyja R. (2017). Miasto jako przestrzeń węzeł i system. Analiza z perspektywy badań politologicznych [The city as space node and system. Analysis from the perspective of political science research]. Acta Politica Polonica 3(41) 5-16. doi: 10.18276/ap.2017.41-01

  • Mavrodieva A. V. Daramita R. I. F. Arsono A. Y. Yawen L. & Shaw R. (2019). Role of civil society in sustainable urban renewal (Machizukuri) after the Kobe Earthquake Sustainability 11(2). 10.3390/su11020335

  • Mesjasz-Lech A. (2014) Development of public transport in the city a challenge for urban logistics in terms of sustainable development. Forum Scientiae Oeconomia 2(4) 63-75.

  • Min-Allah N. Qureshi M. B. Alrashed S. & Rana O. F. (2019). Cost efficient resource allocation for real-time tasks in embedded systems. Sustainable Cities and Society 48. doi: 10.1016/j.scs.2019.101523

  • Mishra A. K. (2019). Henry George and Mohring–Harwitz theorems: Lessons for financing smart cities in developing countries. Environment and Urbanization ASIA 10(1) 13-30. doi: 10.1177/0975425318821797

    • Crossref
    • Export Citation
  • Mizielińska-Chmielewska M. (2018). Inteligentne miasta podążają za modelem ekonomii współdzielenia Smart Cities follow the sharing economy model Retrieved from http://www.inteligentnemiasto.com/smart-cities/inteligentne-miasta-podazaja-za-modelem-ekonomii-wspoldzielenia

  • Molpeceres Arnáiz S. [2017]. Smart City vs. Wise City. En torno a la ciudad y las nuevas tecnologías el caso de Barcelona [Smart City vs. Wise City. Around the city and new technologies the the case of Barcelona]. Cultura Lenguaje y Representación 17 129-155. doi: 10.6035/clr.2017.17.9

  • Mone G. (2015). The new smart cities Communications of the ACM 58(7) 20-21. doi: 10.1145/2771297

    • Crossref
    • Export Citation
  • Morgado L. Rodrigues R. Coelho A. Magano O. Calçada T. Cunha P. T. & Ramos L. (2015). Cities in citizens’ hands. Procedia Computer Science 67 430-438. doi: 10.1016/j.procs.2015.09.288

    • Crossref
    • Export Citation
  • Muktiali M. (2018). Policy analysis of poverty alleviation in Semarang city using spatial and sectoral approach. IOP Conference Series: Earth and Environmental Science 123(1). doi: 10.1088/1755-1315/123/1/012046

  • Munoz-Pandiella I. Bosch C. Merillou N. Patow G. Merillou S. & Pueyo X. (2018). Urban weathering: Interactive rendering of polluted cities IEEE Transactions on Visualization and Computer Graphics 24(12) 3239-3252. doi: 10.1109/TVCG.2018.2794526

    • Crossref
    • PubMed
    • Export Citation
  • Nam T. & Pardo T. A. (2014). The changing face of a city government: A case study of Philly311 Government Information Quarterly 31(Supplement 1) S1-S9. doi: 10.1016/j.giq.2014.01.002

    • Crossref
    • Export Citation
  • Naphade M. Banavar G. Harrison C. Paraszczak J. & Morris R. (2011). Smarter Cities and Their Innovation Challenges. Computer 44(6) 32-39. doi: 10.1109/MC.2011.187

    • Crossref
    • Export Citation
  • Nataraj S. Ferone D. Quintero-Araujo C. Juan A. A. & Festa P. (2019). Consolidation centers in city logistics: A cooperative approach based on the location routing problem International Journal of Industrial Engineering Computations 10(3) 393-404. doi: 10.5267/j.ijiec.2019.1.001

  • Nazarko J. (2013). Regionalny Foresight Gospodarczy. Metodologia i instrumentarium badawcze Regional Economic Foresight. Methodology and Research Tools Warsaw Poland: Związek Pracodawców Warszawy i Mazowsza.

  • Nazarko J. Ejdys J. Halicka K. & Nazarko Ł. (2015a). Foresight Application for Transport Sector. In Fiorini M. (Ed.) Clean Mobility and Intelligent Transport Systems (pp. 379-402). London United Kingdom: The Institution of Engineering and Technology.

  • Nazarko J. Glinska U. Kononiuk A. Nazarko L. (2013). Sectoral foresight in Poland: thematic and methodological analysis. International Journal of Foresight and Innovation Policy 9(1) 19-38. doi: 10.1504/IJFIP.2013.051759

    • Crossref
    • Export Citation
  • Nazarko J. Radziszewski P. Dębkowska K. Ejdys J. Gudanowska A. Halicka K. Kilon J. Kononiuk A. Kowalski K. Krol J. Nazarko Ł. Sarnowski M. & Vilutiene T. (2015b). Foresight Study of Road Pavement Technologies. Procedia Engineering 122 129-136. doi: 10.1016/j.proeng.2015.10.016

    • Crossref
    • Export Citation
  • Neuroni A. C. Haller S. van Winden W. Carabias-Hütter V. & Yildirim O. (2019). Public value creation in a smart city context: An analysis framework. In M. P. Rodriguez Bolivar (Ed.) Setting Foundations for the Creation of Public Value in Smart Cities (pp. 49-76). Cham Switzerland: Springer Nature AG. doi:10.1007/978-3-319-98953-2_3

  • Novo Vázquez A. & Vicente M. R. (2019). Exploring the determinants of e-participation in smart cities. In A. Novo Vázquez & M. R. Vicente E-Participation in Smart Cities: Technologies and Models of Governance for Citizen Engagement (pp. 157-178). Cham Switzerland: Springer International Publishing AG.doi:10.1007/978-3-319-89474-4_8

  • Noworól A. (2011) Zarządzanie miastem – podstawy teoretyczne [Urban management - theoretical basis]. In B. Kożuch C. Kochalski (Eds.) Strategiczne zarządzanie miastem w teorii i praktyce urzędu miasta Poznania Strategic management of the city in the theory and practice of the Poznań City Hall (pp. 25-41). Kraków Poland: Monografie i Studia Instytutu Spraw Publicznych Uniwersytetu Jagiellońskiego 7.

  • Oliveira Á. & Santos I. (2018). Human smart cities. Cocreation methodologies and technologies. WMSCI 2018 - 22nd World Multi-Conference on Systemics Cybernetics and Informatics Proceedings 1 154-160.

  • Onoda Y. (2018). A paradigm shift in city management practices targets the sustainable society NEC Technical Journal 13(1) 19-23.

  • Ortiz-Fournier L. V. Márquez E. Flores F. R. Rivera-Vázquez J. C. & Colon P. A. (2010). Integrating educational institutions to produce intellectual capital for sustainability in Caguas Puerto Rico. Knowledge Management Research and Practice 8(3) 203-215. doi: 10.1057/kmrp.2010.11

    • Crossref
    • Export Citation
  • Panchanathan S. Mcdaniel T. Tadayon R. Rukkila A. & Venkateswara H. (2019). Smart stadia as testbeds for smart cities: Enriching fan experiences and improving accessibility. International Conference on Computing Networking and Communications ICNC 2019 542-546.

  • Panchanathan S. Mcdaniel T. Tadayon R. Rukkila A. & Venkateswara H. (2019). Smart stadia as testbeds for smart cities: Enriching fan experiences and improving accessibility International Conference on Computing Networking and Communications ICNC 2019 542-546. doi: 10.1109/ICCNC.2019.8685580

  • Peng G. C. A. Nunes M. B. & Zheng L. (2017). Impacts of low citizen awareness and usage in smart city services: The case of London’s smart parking system Information Systems and e-Business Management 15(4) 845-876. doi: 10.1007/s10257-016-0333-8

    • Crossref
    • Export Citation
  • Perboli G. De Marco A. Perfetti F. & Marone M. (2014). A new Taxonomy of Smart City Projects. Transportation Research Procedia 3 470-478. 10.1016/j. trpro.2014.10.028

    • Crossref
    • Export Citation
  • Perng S. Kitchin R. & Mac Donncha D. (2018). Hackathons entrepreneurial life and the making of smart cities. Geoforum 97 189-197. doi: 10.1016/j.geoforum.2018.08.024

    • Crossref
    • Export Citation
  • Petrova S. & Prodromidou A. (2019). Everyday politics of austerity: Infrastructure and vulnerability in times of crisis. Environment and Planning C: Politics and Space doi.org/10.1177/2399654419831293

  • Pham T. T. & Phan C. T. (2018). Risk management: Awareness identification and mitigation in public private partnerships of technical infrastructure projects in da nang. Proceedings 2018 4th International Conference on Green Technology and Sustainable Development GTSD 18-23.

  • Proseedmag (2017). Smart city – wady i zalety Smart city - advantages and disadvantages Retrieved from https://proseedmag.pl/gospodarka/smart-city-wady-zalety

  • Putra H. Y. Putra H. & Kurniawan N. B. (2019). Big data analytics algorithm data type and tools in smart city: A systematic literature review. International Conference on Information Technology Systems and Innovation ICITSI 2018 - Proceedings 474-478. doi: 10.1109/ICITSI.2018.8696051

  • Rath M. & Pattanayak B. (2019). Technological improvement in modern health care applications using internet of things (IoT) and proposal of novel health care approach. International Journal of Human Rights in Healthcare 12(2) 148-162. doi: 10.1108/IJHRH-01-2018-0007

    • Crossref
    • Export Citation
  • Ravetz J. (2017). From ‘smart’ cities to ‘wise’: synergistic pathways for collective urban intelligence. JPI Urban Europe - Urban Transitions Pathways Symposium. Retrieved from https://jpi-urbaneurope.eu/app/uploads/2017/04/Ravetz_From-smart-to-wise.pdf

  • Reddy D. V. S. & Mehta R. V. K. (2019). Smart traffic management system for smart cities using reinforcement learning algorithm. International Journal of Recent Technology and Engineering 7(6) 12-15.

  • Sadeghpour S. Jaseemuddin M. & Kharbish S. (2019). Cluster-based cache placement in 5G network. Proceedings - 20th International Conference on High Performance Computing and Communications 16th International Conference on Smart City and 4th International Conference on Data Science and Systems HPCC/SmartCity/DSS 2018 457-465. doi: 10.1109/HPCC/SmartCity/DSS.2018.00091

  • Safiullin A. Krasnyuk L. & Kapelyuk Z. (2019). Integration of industry 4.0 technologies for “smart cities” development. IOP Conference Series: Materials Science and Engineering 497(1).

  • Schaffers H. Ratti C. & Komninos N. (2012). Special issue on smart applications for smart cities - new approaches to innovation: Guest editors’ introduction. Journal of Theoretical and Applied Electronic Commerce Research 7(3) 2-5. doi: 10.4067/S0718-18762012000300005

  • Schmitt S. Kandah F. I. & Brownell D. (2019). Intelligent threat hunting in software-defined networking IEEE International Conference on Consumer Electronics ICCE 2019. doi: 10.1109/ICCE.2019.8661952

  • Scorţar L. M. Vereş Vincenţiu M. M. & Anamaria M. (2010). Solid waste disposal problems in Arieş urban community from Cluj county. Polish Journal of Management Studies 2(2) 116-123.

  • Sedighian Kashi S. (2019). Area coverage of heterogeneous wireless sensor networks in support of internet of things demands. Computing 101(4) 363-385. doi: 10.1007/s00607-018-0623-8

    • Crossref
    • Export Citation
  • Sharma G. & Kalra S. (2019). Advanced multi-factor user authentication scheme for E-governance applications in smart cities. International Journal of Computers and Applications 41(4) 312-327. doi: 10.1080/1206212X.2018.1445352

    • Crossref
    • Export Citation
  • Shin D. H. (2009). Ubiquitous city: Urban technologies urban infrastructure and urban informatics Journal of Information Science 35(5) 515-526. doi: 10.1177/0165551509100832

    • Crossref
    • Export Citation
  • Siderska J. & Jadaa K. S. (2018). Cloud manufacturing: a service-oriented manufacturing paradigm. A review paper Engineering Management in Production and Services 10(1) 22-31. doi: 10.1515/emj-2018-0002

    • Crossref
    • Export Citation
  • Sikora-Fernandez D. (2017). Smart cities w Polsce to nadal utopia Smart cities in Poland are still a utopia Retrieved from http://urbnews.pl/smart-cities-polsce-nadal-utopia/

  • Sittón-Candanedo I. Alonso R. S. Corchado J. M. Rodríguez-González S. & Casado-Vara R. (2019). A review of edge computing reference architectures and a new global edge proposal. Future Generation Computer Systems 99 278-294. doi: 10.1016/j.future.2019.04.016

    • Crossref
    • Export Citation
  • Sittón-Candanedo I. Alonso R. S. Corchado J. M. Rodríguez-González S. & Casado-Vara R. (2019). A review of edge computing reference architectures and a new global edge proposal. Future Generation Computer Systems 99 278-294. doi: 10.1016/j.future.2019.04.016

    • Crossref
    • Export Citation
  • Sodiq A. Baloch A. A. B. Khan S. A. Sezer N. Mahmoud S. Jama M. & Abdelaal A. (2019). Towards modern sustainable cities: Review of sustainability principles and trends. Journal of Cleaner Production 227 972-1001. doi: 10.1016/j.jclepro.2019.04.106

    • Crossref
    • Export Citation
  • Sou G. (2019). Household self-blame for disasters: Responsibilisation and (un)accountability in decentralised participatory risk governance. Disasters 43(2) 289-310. doi: 10.1111/disa.12319

    • Crossref
    • PubMed
    • Export Citation
  • Sproull L. & Patterson J. F. (2004). Making information cities livable Communications of the ACM 47(2) 33-37. doi: 10.1145/966389.966412

    • Crossref
    • Export Citation
  • Stawasz D. & Sikora-Fernandez D. (2015). Zarządzanie w polskich miastach zgodnie z koncepcją smart city Management in Polish cities according to the smart city concept Warsaw Poland: Placet.

  • Stawasz D. & Sikora-Fernandez D. (2016). Koncepcja smart city na tle procesów i uwarunkowań rozwoju współczesnych miast The smart city concept against the background of processes and conditions for the development of modern cities Łódź Poland: Wydawnictwo Uniwersytetu Łodzkiego.

  • Stolfi F. & Sussman G. (2001). Telecommunications and transnationalism: the polarization of social space Information Society 17(1) 49-62. doi: 10.1080/019722401750067423

    • Crossref
    • Export Citation
  • Streitz N. (2017). Re-defining the “smart everything” paradigm: Towards reconciling humans and technology. Proceedings of the International Conference on ICT Society and Human Beings 2017 - Part of the Multi Conference on Computer Science and Information Systems 2017.

  • Szołtysek J. & Otręba R. (2015). Zarządzanie miastem i jego wpływ na jakość życia mieszkańców miast województwa śląskiego – doniesienie badawcze [City management and its influence on the quality of life of city dwellers of the Silesian Voivodeship - research report]. Problemy Rozwoju Miast Kwartalnik Naukowy Instytutu Rozwoju Miast 12(2) 37-42.

  • Szpilko D. (2015). The Future of Tourism Development in the Podlaskie Voivodeship. Procedia – Social and Behavioral Sciences 213 977-984. doi: 10.1016/j.sbspro.2015.11.514

    • Crossref
    • Export Citation
  • Szpilko D. (2017). Tourism Supply Chain – overview of selected literature. Procedia Engineering 182 687-693 doi: 10.1016/j.proeng.2017.03.180

    • Crossref
    • Export Citation
  • Tan M. (1999). Creating the digital economy: strategies and perspectives from Singapore International Journal of Electronic Commerce 3(3) 105-122.

    • Crossref
    • Export Citation
  • Targowski A. S. (1990). Strategies and architecture of the electronic global village Information Society 17(3) 187-202. doi: 10.1080/01972243.1990.9960094

  • Tay K. -. K. C. Supangkat S. H. Cornelius G. & Arman A. A. (2018). The SMART initiative and the Garuda smart city framework for the development of smart cities Proceeding - 2018 International Conference on ICT for Smart Society: Innovation Toward Smart Society and Society 5.0 ICISS 2018. doi: 10.1109/ICTSS.2018.8549961

  • Tenney M. Hall G. B. & Sieber R. E. (2019). Use the below title: A crowd sensing system identifying geotopics and community interests from user-generated content. International Journal of Geographical Information Science. doi:10.1080/13658816.2019.15 91413

  • Timmerman R. Marshall S. & Zhang Y. (2019). Towards socially sustainable urban design: Analysing acto R-area relations linking micro-morphology and micro-democracy. International Journal of Sustainable Development and Planning 14(1) 20-30. doi: 10.2495/SDP-V14-N1-20-30

    • Crossref
    • Export Citation
  • Tomaszewska E. J. & Florea A. (2018). Urban smart mobility in the scientific literature - bibliometric analysis. Engineering Management in Production and Services 10(2) 41-56. doi: 10.2478/emj-2018-0010

    • Crossref
    • Export Citation
  • Trencher G. (2019). Towards the smart city 2.0: Empirical evidence of using smartness as a tool for tackling social challenges. Technological Forecasting and Social Change 142 117-128. doi: 10.1016/j.techfore.2018.07.033

    • Crossref
    • Export Citation
  • United Nations Department of Economic and Social Affairs (2018). World Urbanization Prospects 2018: Key Facts New York.

  • Vaidya B. & Mouftah H. T. (2019). Automated reservation mechanism for charging connected and autonomous EVs in smart cities. IEEE Vehicular Technology Conference 2018-August. doi: 10.1109/VTCFall.2018.8690905

  • Vhaduri S. Poellabauer C. Striegel A. Lizardo O. & Hachen D. (2018). Discovering places of interest using sensor data from smartphones and wearables. IEEE SmartWorld Ubiquitous Intelligence and Computing Advanced and Trusted Computed Scalable Computing and Communications Cloud and Big Data Computing Internet of People and Smart City Innovation SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI 2017 - Conference Proceedings 1-8. doi: 10.1109/UIC-ATC.2017.8397495

  • Vitunskaite M. He Y. Brandstetter T. & Janicke H. (2019). Smart cities and cyber security: Are we there yet? A comparative study on the role of standards third party risk management and security ownership. Computers and Security 83 313-331

    • Crossref
    • Export Citation
  • Vranken T. Sliwa B. Wietfeld C. & Schreckenberg M. (2019). Performance comparison of dynamic vehicle routing methods for minimizing the global dwell time in upcoming smart cities. IEEE Vehicular Technology Conference 2018-August. doi: 10.1109/VTC-Fall.2018.8690655

  • Wang T. Liang Y. Jia W. Arif M. Liu A. & Xie M. (2019). Coupling resource management based on fog computing in smart city systems. Journal of Network and Computer Applications 135 11-19. doi: 10.1016/j.jnca.2019.02.021

    • Crossref
    • Export Citation
  • Wei Y. Wang Y. Chang Y. Shi B. & Shao K. (2019). Research on the construction of “u-smart transportation system” under artificial intelligence technology. IOP Conference Series: Materials Science and Engineering 490(4). doi: 10.1088/1757-899X/490/4/042002

  • What are the disadvantages of smart cities? Retrieved from https://www.quora.com/What-are-the-disadvantages-of-smart-cities

  • Xie Q. & Hwang L. (2019). Security enhancement of an anonymous roaming authentication scheme with two-factor security in smart city. Neurocomputing 347 131-138. doi: 10.1016/j.neucom.2019.03.020

    • Crossref
    • Export Citation
  • Xie Y. Gupta J. Li Y. & Shekhar S. (2019). Transforming smart cities with spatial computing IEEE International Smart Cities Conference ISC2 2018. doi: 10.1109/ISC2.2018.8656800

  • Yang Z. & Zhu M. (2019). A dynamic prediction model of real-time link travel time based on traffic big data Proceedings - 2019 International Conference on Intelligent Transportation Big Data and Smart City ICITBS 2019 330-333. doi: 10.1109/ICITBS.2019.00087

  • Yu M. Yang Y. Chen F. Zhu F. Qu J. & Zhang S. (2019). Response of agricultural multifunctionality to farmland loss under rapidly urbanizing processes in yangtze river delta china Science of the Total Environment 66 1-11.

  • Zanella A. Bui N. Castellani A. Vangelista L. & Zorzi M. (2014). Internet of things for smart cities IEEE Internet of Things Journal 1(1) 22-32. doi: 10.1109/JIOT.2014.2306328

    • Crossref
    • Export Citation
  • Zhang Y. & Pu H. (2019). Environmental indicators of sustainable computing applications for smart city. Concurrency Computation 31(9). doi: 10.1002/cpe.4751

  • Zhao L. Wang J. Liu J. & Kato N. (2019). Routing for crowd management in smart cities: A deep reinforcement learning perspective. IEEE Communications Magazine 57(4) 88-93. doi: 10.1109/MCOM.2019.1800603

    • Crossref
    • Export Citation
  • Zheng H. Chang W. & Wu J. (2019). Traffic flow monitoring systems in smart cities: Coverage and distinguishability among vehicles. Journal of Parallel and Distributed Computing 127 224-237. doi: 10.1016/j. jpdc.2018.07.008

    • Crossref
    • Export Citation
  • Zhu Z. & Liang W. (2019). Congestion control strategy of distance education system based on TCP protocol Proceedings - 2019 International Conference on Intelligent Transportation Big Data and Smart City ICITBS 2019 485-488. doi: 10.1109/ICITBS.2019.00123

  • Zhuhadar L. Thrasher E. Marklin S. & de Pablos P. O. (2017). The next wave of innovation - review of smart cities intelligent operation systems. Computers in Human Behavior 66 273-281. doi: 10.1016/j. chb.2016.09.030

    • Crossref
    • Export Citation
Search
Journal information
Impact Factor


CiteScore 2018: 0.72

Source Normalized Impact per Paper (SNIP) 2018: 0.505

Figures
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 164 164 68
PDF Downloads 80 80 49