Yet Another Pseudorandom Number Generator

Open access

Abstract

We propose a novel pseudorandom number generator based on R¨ossler attractor and bent Boolean function. We estimated the output bits properties by number of statistical tests. The results of the cryptanalysis show that the new pseudorandom number generation scheme provides a high level of data security.

[1] F. Abundiz-Pérez, C. Cruz-Hernández, M.A. Murillo-Escobar, R.M. López-Gutiérrez, and A. Arellano-Delgado, A Fingerprint Image Encryption Scheme Based on Hyperchaotic Rössler Map, Mathematical Problems in Engineering, 2016, Article ID 2670494, pages 15, 2016.

[2] A.Y. Aguilar-Bustos, C. Cruz-Hernández, R.M. López-Gutiérrez, and C. Posadas-Castillo, Synchronization of Different Hyperchaotic Maps for Encryption, Nonlinear Dynamics and Systems Theory, 8(3), 221-236, 2008.

[3] G. Alvarez, S. Li, Some Basic Cryptographic Requirements for Chaos- Based Cryptosystems, International Journal of Bifurcation and Chaos, 16, 2129-2151, 2006.

[4] C. Banerjee, D. Datta, and D. Datta, A Random Bit Generator Using Rössler Chaotic System, K. Maharatna et al. (eds.), Computational Advancement in Communication Circuits and Systems, Lecture Notes in Electrical Engineering, 335, 81-87, 2015.

[5] V. Canals, A. Morro, and J.L. Rosselló, Random Number Generation Based on the Rossler Attractor, IEICE Proceeding Series, 1, 272-275, 2014.

[6] D. Chantov, A Chaos Based Two-level Secure Communication System on the Basis of two Different Pairs of Synchronized Chaotic Systems, International Journal on Information Technologies & Security, 1, 51-62, 2012.

[7] T. W. Cusick, and P. Stănică, Cryptographic Boolean Functions and Applications, Academic Press, 2009.

[8] Dăscălescu, Ana-Cristina and Boriga, Radu Eugen and Diaconu, Adrian- Viorel, Study of a new chaotic dynamical system and its usage in a novel pseudorandom bit generator, Mathematical Problems in Engineering 2013, Article ID 769108, 10 pages, 2013, http://dx.doi.org/10.1155/2013/769108.

[9] I. Faragó, Numerical Methods for Ordinary Differential Equations, TypoTech, Budapest, 2014.

[10] M. Frunzete, A.-A. Popescu, and J.-P. Barbot, Dynamical Discrete-Time Rössler Map with Variable Delay, Lecture Notes in Computer Science, 9155, 431-446, 2015.

[11] J.H. García-López, and Jaimes-Reátegui, R. and Pisarchik, A.N. and Murguía-Hernandez, A. and Medina-Gutiérrez, C. and Valdivia- Hernadez, R. and Villafana-Rauda, E., Novel Communication Scheme based on Chaotic Rössler Circuits, Journal of Physics: Conference Series 23(1), 276-284, 2005.

[12] M. Itoh, T. Yang, and L.O. Chua, Conditions for impulsive synchronization of chaotic and hyperchaotic systems, International Journal of Bifurcation and Chaos, 11(2), 551-560, 2001.

[13] K. Kordov, Modified Pseudo-Random Bit Generation Scheme Based on Two Circle Maps and XOR Function, Applied Mathematical Sciences, 9(3), 129-135, 2015.

[14] K. Kordov, Signature Attractor Based Pseudorandom Generation Algorithm, Advanced Studies in Theoretical Physics, 9(6), 287-293, 2015.

[15] B. Liu, and Zhang, Lijia and Xin, Xiangjun andWang, Yongjun, Physical layer security in OFDM-PON based on dimension-transformed chaotic permutation, IEEE Photonics Technology Letters, 26(2), 127-130, 2014.

[16] D. Malchev, I. Ibryam, Construction of pseudorandom binary sequences using chaotic maps (2015) Applied Mathematical Sciences, 9 (77-80), 3847-3853. http://dx.doi.org/10.12988/ams.2015.52149.

[17] G. Marsaglia, DIEHARD: a Battery of Tests of Randomness, http://www.fsu.edu/pub/diehard/.

[18] H.M. Al-Najjar, Digital image encryption algorithm based on multidimensional chaotic system and pixels location, International Journal of Computer Theory and Engineering, 4(3), 354-357, 2012.

[19] T. Neumann, Bent Functions, Doctoral dissertation, University of Kaiserslautern, 2006.

[20] Orozco, Eduardo Rodriguez and Guerrero, E Efren Garcia and González, Everardo Inzunza and Bonilla, Oscar R López, Image Encryption Based on Improved Rössler Hyperchaotic Map, Difu100ci@ Revista en Ingeniería y Tecnología, UAZ, 8(2), 2014.

[21] K. Pommerening, Fourier Analysis of Boolean Maps-A Tutorial, 2005.

[22] O. S. Rothaus, On ”bent” functions, Journal of Combinatorial Theory, Series A, Volume 20, Issue 3, 1976, 300-305.

[23] O.E. Rössler, An Equation for Continuous Chaos, Physics Letters, 57A(5), 397-398, 1976.

[24] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Application, NIST Special Publication 800-22, Revision 1a (Revised: April 2010), Lawrence E. Bassham III, 2010, http://csrc.nist.gov/rng/.

[25] A. Sambas, W.S. Mada Sanjaya, M. Mamat, and Halimatussadiyah, Design and analysis bidirectional chaotic synchronization of Rössler circuit and its application for secure communication, Applied Mathematical Sciences, 7(1), 11-21, 2013.

[26] Zh. Savova-Tasheva, A. Tasheva, Algorithms for Extended Galois Field Generation and Calculation, Mathematical and Software Engineering, 1(1), 18-24, 2015, http://varepsilon.com/index.php/mse/article/view/7.

[27] B.P. Stoyanov, Chaotic cryptographic scheme and its randomness evaluation, in 4th AMiTaNS’12, AIP Conference Proceedings, 1487, 397-404, 2012, http://dx.doi.org/10.1063/1.4758983.

[28] B. Stoyanov, Pseudo-random Bit Generation Algorithm Based on Chebyshev Polynomial and Tinkerbell Map, Applied Mathematical Sciences, Vol. 8, 2014, no. 125, 6205-6210, http://dx.doi.org/10.12988/ams.2014.48676.

[29] B.P. Stoyanov, Pseudo-random bit generator based on Chebyshev map, in 5th AMiTaNS’13, AIP Conference Proceedings, 1561 (2013), 369-372, http://dx.doi.org/10.1063/1.4827248.

[30] B.P. Stoyanov, Using Circle Map in Pseudorandom Bit Generation, in 6th AMiTaNS’14, AIP Conference Proceedings, 1629 (2014), 460 -463, http://dx.doi.org/10.1063/1.4902309.

[31] B. Stoyanov, K. Kordov, K., A Novel Pseudorandom Bit Generator Based on Chirikov Standard Map Filtered with Shrinking Rule, Mathematical Problems in Engineering, 2014, Article ID 986174, 2014, 1-4., http://dx.doi.org/10.1155/2014/986174.

[32] B.P. Stoyanov, K.M. Kordov, Cryptanalysis of a modified encryption scheme based on bent Boolean function and Feedback with Carry Shift Register, in 5th AMiTaNS’13, AIP Conference Proceedings, 1561, 373-377, 2013, http://dx.doi.org/10.1063/1.4827249.

[33] B. Stoyanov, K. Kordov, Image encryption using Chebyshev map and rotation equation, Entropy, 17, 2117-2139, 2015, http://dx.doi.org/10.3390/e17042117.

[34] B. Stoyanov, K. Kordov, Novel Image Encryption Scheme Based on Chebyshev Polynomial and Duffing Map, The Scientific World Journal 2014, Article ID 283639, 1-11, 2014, http://dx.doi.org/10.1155/2014/283639.

[35] J. Walker, ENT: A Pseudorandom Number Sequence Test Program, 2008, http://www.fourmilab.ch/random/.

[36] IEEE Computer Society, 754-2008 - IEEE Standard for Floating- Point Arithmetic, Revision of ANSI/IEEE Std 754-1985, 2008, DOI: 10.1109/IEEESTD.2008.4610935.

International Journal of Electronics and Telecommunications

The Journal of Committee of Electronics and Telecommunications of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.72

SCImago Journal Rank (SJR) 2016: 0.248
Source Normalized Impact per Paper (SNIP) 2016: 0.542

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 61 61 24
PDF Downloads 15 15 9