Influence of Pumping Beam Width on Vecsel Output Power

Open access

Abstract

The paper is devoted to a numerical analysis of an influence of a pumping beam diameter on output power of optically pumped vertical-external-cavity surface-emitting lasers. Simulations have been carried out for a structure with a GaInNAs/GaAs active region operating at 1.32 urn. Various assembly configurations have been considered. Results obtained show that laser power scaling is strongly affected by thermal properties of the device.

[1] O. G. Okhotnikov, Ed., Semiconductor Disk Lasers: Physics and Technology. Weinheim: Wiley-VCH, 2010.

[2] S. Chatterjee, A. Chemikov, J. Herrmann, M. Scheller, M. Koch, B. Kunert, W. Stolz, S. W. Koch, T.-L. Wang, Y. Kaneda, J. M. Yarbor-ough, J. Hader, and J. V. Moloney, “Power scaling and heat management in high-power vecsels,” in Lasers and Electro-Optics Europe (CLEO EUROPE/EQEC), 2011 Conference on and 12th European Quantum Electronics Conference, May 2011.

[3] S. Lütgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spth, “8-W high-efficiency continuous-wave semiconductor disk laser at 1000 nm,” Applied Physics Letters, vol. 82, no. 21, pp. 3620-3622, 2003.

[4] A. Chernikov, J. Herrmann, M. Scheller, M. Koch, B. Kunert, W. Stolz, S. Chatterjee, S. W. Koch, T.-L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, and J. V. Moloney, “Influence of the spatial pump distribution on the performance of high power vertical-external-cavity surface-emitting lasers,” Applied Physics Letters, vol. 97, no. 19, pp. 191 110191 110-3, Nov 2010.

[5] T.-L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, J. V. Moloney, A. Chernikov, S. Chatterjee, S. W. Koch, B. Kunert, and W. Stolz, “Highpower optically pumped semiconductor laser at 1040 nm,” Photonics Technology Letters, IEEE, vol. 22, no. 9, pp. 661-663, May 2010.

[6] J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GalnNAs vertical external-cavity surface emitting laser operating at 1.32 urn,” Electronics Letters, vol. 40, no. 1, pp. 30-31, Jan 2004.

[7] R. P. Sarzała and W. Nakwaski, “Optimization of 1.3 um GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for low-threshold room-temperature operation,” Journal of Physics: Condensed Matter, vol. 16, no. 31, p. S3121, 2004.

[8] S. L. Chuang, Physics of Optoelectronic Devices. New York: John Wiley & Sons, 1995.

[9] L. Piskorski, L. Frasunkiewicz, A. K. Sokol, and R. P. Sarzala, “A possibility to achieve emission in the mid-infrared wavelength range from semiconductor laser active regions,” in Transparent Optical Networks (ICTON), 2014 16th International Conference on, July 2014, pp. 1-4. [10] A. K. Sokół and R. P. Sarzała, “Numerical analysis of optically pumped VECSELs,” Proceedings of SPIE, vol. 8702, 2013.

[11] T. Leinonen, Y. A. Morozov, A. Harkonen, and M. Pessa, “Vertical external-cavity surface-emitting laser for dual-wavelength generation,” Photonics Technology Letters, IEEE, vol. 17, no. 12, pp. 2508-2510, 2005.

[12] M. Wasiak, “Mathematical rigorous approach to simulate an over-threshold VCSEL operation,” Physica E: Low-dimensional Systems and Nanostructures, vol. 43, no. 8, pp. 1439-1444, 2011.

[13] R. P. Sarzala, L. Piskorski, P. Szczerbiak, R. Kudrawiec, and W. Nakwaski, “An attempt to design long-wavelength (į2 um) InP-based GalnNAs diode lasers,” Applied Physics A, vol. 108, no. 3, pp. 521-528, 2012.

[14] R. Fehse, S. Tomic, A. R. Adams, S. J. Sweeney, E. P. O’Reilly, A. Andreev, and H. Riechert, “A quantitative study of radiative, auger, and defect related recombination processes in 1.3-um GaInNAs-based quantum-well lasers,” Selected Topics in Quantum Electronics, IEEE Journal of, vol. 8, no. 4, pp. 801-810, Jul 2002.

[15] R. P. Sarzała and W. Nakwaski, “Carrier diffusion inside active regions of gain-guided vertical-cavity surface-emitting lasers,” Optoelectronics, IEE Proceedings -, vol. 144, no. 6, pp. 421-425, Dec 1997.

[16] A. Amith, I. Kudman, and E. F. Steigmeier, “Electron and phonon scattering in GaAs at high temperatures,” Phys. Rev., vol. 138, pp. A1270-A1276, May 1965.

[17] S. Adachi, “GaAs, AlAs, and AlxGa1-xAs material parameters for use in research and device applications,” Journal of Applied Physics, vol. 58, no. 3, pp. R1-R29, 1985.

[18] W. Nakwaski, “Thermal conductivity of binary, ternary, and quaternary III-V compounds,” Journal of Applied Physics, vol. 64, no. 1, pp. 159166, 1988.

[19] A. K. Sokoł and R. P. Sarzała, “Comparative analysis of thermal problems in GaAs- and InP-based 1.3-umVECSELs,” Optica Applicata, vol. 43, no. 2, pp. 325-341, 2013.

[20] Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, Thermophysical Properties of Matter Volume 1: Thermal Conductivity: Metallic Elements and Alloys. New York: IFI/Plenum, 1970.

[21] D. R. Lide, CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press, 2005.

[22] S. Kasap and P. Capper, Eds., Springer Handbook of Electronic and Photonic Materials. Leipzig: Springer, 2007.

[23] S. Barman and G. P. Srivastava, “Temperature dependence of the thermal conductivity of different forms of diamond,” Journal of Applied Physics, vol. 101, no. 12, pp. 123 507-8, 2007.

[24] S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” Journal of Applied Physics, vol. 87, no. 11, pp. 7825-7837, 2000.

[25] S. R. Adachi, Physical Properties of III-V Semiconductor Compounds, 1st edition. Chichester: John Wiley & Sons, 1992.

[26] W. K. Tan, H.-Y. Wong, A. E. Kelly, M. Sorel, J. H. Marsh, and A. C. Bryce, “Temperature behaviour of pulse repetition frequency in passively mode-locked InGaAsP/InP laser diode — experimental results and simple model,” Selected Topics in Quantum Electronics, IEEE Journal of, vol. 13, no. 5, pp. 1209-1214, Sept 2007. [27] T. Kitatani, M. Kondow, K. Shinoda, Y. Yazawa, M. Okai, and K. Uomi, “Extremely large refractive index of strained gainnas thin films,” in Indium Phosphide and Related Materials, 1998 International Conference on, May 1998, pp. 341-344.

International Journal of Electronics and Telecommunications

The Journal of Committee of Electronics and Telecommunications of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.72

SCImago Journal Rank (SJR) 2016: 0.248
Source Normalized Impact per Paper (SNIP) 2016: 0.542

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 80 80 11
PDF Downloads 26 26 4