Simulation of Decline of Norway Spruce (Picea Abies L. Karst.) Forests in Gorgan Mountains (Ukrainian Carpathians): Case Study Using Forkome Model


The FORKOME model used in the article contains elements of forest and ecological approaches and was specially developed for the conditions of the Gorgans. The modeling was performed based on the single simulation results and statistically averaged forecast of 200 simulations (“Monte Carlo”) in order to show the tendency of changes and their correspondence with single simulations. The forecast of the forest dynamics was conducted at the 100th anniversary period with “control” and “warm-dry” scenarios. It has been revealed that the rapid decrease in biomass in the first decade was caused by Norway spruce decline. It was revealed that in the control scenario, the most active biomass growth during the 100th year forecast was shown by Silver fir (Abies alba Mill.) and beech (Fagus sylvatica L.). The fir reacted relatively sensitively to the warming and decrease in rainfall. The relationships between tree species and the influence of biomass of Norway spruce tree on the biomass of the whole forest tree stand were analyzed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Botkin, D.B. (1993). Forest dynamics: an ecological model. Oxford, New York: Oxford University Press.

  • Brzeziecki, B. (1999). Ecological model of the forest stand. Principles of construction, parameterization, examples of application (in Polish). Ph.D. Thesis, Warszawa.

  • Bugmann, H. (2001). A review of forest gap models. Clim. Change, 51, 259−305. DOI: 10.1023/A:1012525626267.

  • Debrynuk, Yu M. (2011). Die-back of the fir forests: causes and consequences (in Ukrainian). Науковий вісник НЛТУ України, 21(16), 32−38.

  • Durło, G. (2011). The possibility of adaptation of spruce forests in Beskid Śląski Mts. to changing climatic conditions (in Polish). Prace i Studia Geograficzne, 47, 227–236.

  • Fabrika, M. (2005). Simulator biodynamiky lesa SIBYLA, koncepcia, konštrukcia a programove riešenie. Ph.D. Thesis, Technicka univerzita vo Zvolen.

  • Frazer, G.W., Canham, C.D. & Lertzman K.P. (2000). Gap Light Analyzer (GLA), Version 2.0: Image processing software to analyze true-colour, hemispherical canopy photographs. Bull. Ecol. Soc. Am., 81, 191–197. DOI: 10.1890/0012-9623(2000)081[0190:TT]2.0.CO;2.

  • IPCC (2007). Climate Change 2007: Synthesis report. In Core Writing Team, R.K. Pachauri & A. Reisinger (Eds.), Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. Geneva: IPCC.

  • Grodzki, W., Starzyk, J. & Kosibowicz M. (2014). Impact of selected stand characteristics on the occurrence of the bark beetle Ips typographus (L.) in the Beskid Żywiecki Mountains (in Polish). Leśne Prace Badawcze, 75(2), 159–169. DOI: 10.2478/frp-2014-0015.

  • Holubets, M. (1978). Spruce forests of Ukrainian Carpathians (in Ukrainian). Nauka.

  • Jørgensen, S.E. (1994). Fundamentals of ecological modelling. Amsterdam, London, New York, Tokyo: Elsevier.

  • Kozak, I., Chłódek, D., Zawadzki, A., Kozak, H. & Potaczała G. (2007). Simulation of spruce forest reconstruction in the Polish Bieszczady using the FORKOME model (in Polish). Leśne Prace Badawcze, 2, 7–26.

  • Kozak, I. & Menshutkin V. (2001). Investigation of spruce forest dynamics in the Bieszczady Mountains using a computer modelling. Ekológia (Bratislava), 20(4), 371−378.

  • Kozak, I. & Menshutkin V. (2002). Predictions of spruce forest dynamics in the Polish Bieszczady and Ukrainian Bieskidy using the computer modelling. Baltic Forestry, 8(1), 28−34.

  • Kozak, I., Mikusiński, G, Stępień, A., Kozak, H. & Frąk R. (2012). Modelling forest dynamics in a nature reserve: a case study from south-central Sweden. J. For. Sci., 58(10), 436–445. DOI: 10.17221/28/2012-JFS.

  • Lavnyy, V. & Schnitzler G. (2014). Conversion felling in the secondary spruce stands experiences in Germany (in Ukrainian). Proceedings of the Forestry Academy of Sciences of Ukrain, Collection of Research Papers, 12, 73−78.

  • Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Sylvain Delzon, S., Corona, P., Marja Kolstro, M., Lexer, M. & Marchetti M. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag., 259, 698–709. DOI: 10.1016/j.foreco.2009.09.023.

  • Mandre, M., Annuka, E. & Tuulmets L. (1992). Response reactions of conifers to alkaline dust pollution. Changes in the pigment system. Proc. Est. Acad. Sci. Biol. Ecol., 4, 156–173.

  • Parpan, V.I., Shparyk, Y.S., Slobodyan, P., Parpan, T., Korshov, V., Brodovich, R., Krynyckyi, G., Debrenyuk, Y., Kramarets, V. & Cheban I. (2014). Forest management peculiarities in secondary Norway spruce (Picea abies (L.) H. Karst.) stands of the Ukrainian Carpathian (in Ukrainian). Proceedings of the Forestry Academy of Sciences of Ukraine, Collection of Research Papers, 12, 178−185.

  • Shparyk, Y.S. (2014). Form diversity and the health condition of Norway spruce (Picea abies (L.) Karst.) in the main forest types of the Ukrainian Carpathians (in Ukrainian). Forestry and Forest Melioration, 125, 87−96.

  • Shparyk, Y.S. (2019). Ecological results of Norway spruce forests’ decline in main forest types of the Ukrainian Carpathians (in Ukrainian). Proceedings of the Forestry Academy of Sciences of Ukraine, 18, 145−153. DOI: 10.15421/411915.

  • Spiecker, H., Hansen, J., Klimo, E., Skovsgaard, J.P., Sterba, H. & von Teuffel K. (2004). Norway spruce conversion -options and consequences. European Forest Institute Research Report, 18, 25−62.

  • Turis, E.V. & Shanta O.I. (2013). Status and perspectives of the content of derived conifer forest in the territory of National Park “Enchanted land” (in Ukrainian). Науковий вісник Ужгородського університету: Серія: Географія, Землеустрій, Природокористування, 2, 186–190.


Journal + Issues