Changes in Snowbed Vegetation in the Western Carpathians Under Changing Climatic Conditions and Land Use in the Last Decades

Abstract

Snowbed vegetation is one of the most sensitive alpine vegetation type to the climate change, because shortened period of snow cover has essential impact on the snowbed environment. We focus on its changes in the Western Tatras, which is a part of the Western Carpathians (Slovakia). The assessment of changes in snowbed vegetation is based on the method of pair comparison. In 2016–2018, we resampled 21 historical phytocoenological relevés of Festucion picturatae and Salicion herbaceae alliances from 1974 and 1976. Historical data include 45 species, while recent data include 50 species. We observed a decrease in the frequency of species characteristic for snowbeds and, on the other hand, an increase in that for strong competitors, especially grasses and small shrubs from adjacent habitats. According to Ellenberg’s ecological indices, there is some increase in temperature and decrease in light ecological factors in snowbed habitats. In S. herbaceae data, a statistically significant increase in the average species number was observed with new species that penetrated from the adjacent habitats. Changes in species composition between historical and recent data are confirmed by Non-metric multidimensional scaling (nMDS) ordination diagram. Linear mixed-effect models showed big variability in factors that have impact on phytodiversity; nevertheless, temperature is the most significant factor.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abeli, T., Rossi, G., Gentili, R., Mondoni, A. & Cristofanelli P. (2012). Response of alpine plant flower production to temperature and snow cover fluctuation at the species range boundary. Plant Ecol., 213, 1–13. DOI: 10.1007/s11258-011-0001-5.

  • Austrheim, G., Mysterud, A., Hassel, K., Evju, M. & Okland R.H. (2007). Interactions between sheep, rodents, graminoids, and bryophytes in an oceanic alpine ecosystem of low productivity. Ecoscience, 14, 178–187. DOI:10.2980/1195-6860(2007)14[178:IBSRGA]2.0.CO;2.

  • Balabukh, V.O. & Lukianets O.I. (2015). Zmina klimatu ta yoho naslidky u Rakhivskomu rayoni Zakarpatskoyi oblasti. Hydrol. Hydrochem. Hydroecol., 37, 132–148.

  • Baur, B., Cremene, C., Groza, G., Schileyko, A.A., Baur, A. & Erhardt A. (2007). Intensified grazing affects endemic plant and gastropod diversity in alpine grasslands of the Southern Carpathian mountains (Romania). Biologia (Bratislava), 62, 438−445. DOI: 10.2478/s11756-007-0086-4.

  • Bohuš, I. (1966). History of Liptov Tatras (in Slovak). Tatranská Lomnica: ŠL Tanap-u.

  • Braun-Blanquet, J. (1964). Pflanzensoziologie. Grundzüge der Vegetationskunde. Wien & New York: Springer Verlag.

  • Britton, A.J., Beale, C.M., Towers, W. & Hewison R.L. (2009). Biodiversity gains and losses: evidence for homogenisation of Scottish alpine vegetation. Biol. Conserv., 142, 1728–1739. DOI: 10.1016/j.biocon.2009.03.010.

  • Bruelheide, H. (2003). Translocation of a montane meadow to simulate the potential impact of climate change. Appl. Veg. Sci., 6, 23−24. DOI: 10.1111/j.1654-109X.2003.tb00561.x.

  • Cannone, N., Sgorbati, S. & Guglielmin M. (2007). Unexpected impacts of climate change on alpine vegetation. Frontiers in Ecology and the Environment, 5, 360–364. DOI : 10.1890/1540-9295(2007)5[360:UIOCCO ]2.0.CO;2.

  • Carbognani, M., Tomaselli, M. & Patraglia A. (2014). Current vegetation changes in an alpine late snowbed community in the south-eastern Alps (N-Italy). Alpine Botany, 124, 105–113. DOI: 10.1007/s00035-014-0135-x.

  • Catorci, A., Gatti, R. & Cesaretti S. (2012). Effect of sheep and horse grazing on species and functional composition of sub-Mediterranean grasslands. Appl. Veg. Sci., 15, 459–469. DOI: 10.1111/j.1654-109X.2012.01197.x.

  • Coldea, G. (2003). The alpine flora and vegetation of the southeastern Carpathians. In L. Nagy, G. Grabherr, Ch. Korner & D.B.A. Thompson (Eds.), Alpine biodiversity in Europe (pp. 65–73). Berlin: Springer-Verlag.

  • Cook, W. (1966). Factors affecting utilization of mountain slopes by cattle. J. Range Manag., 19, 200−204. DOI: 10.2307/3895647.

  • Crofts, A. & Jefferson R.G. (Eds.) (1999). The lowland grassland management. Peterborough: English Nature/The Wildlife Trusts.

  • Czortek, P., Kapfer, J., Delimat, A., Eycott, A.M., Grytnes, J.-A., Orczewska, A., Ratyńska, H., Zieba, A. & Jaroszewicz B. (2018). Plant species composition shifts in the Tatra Mts as a response to environmental change: a resurvey study after 90 years. Folia Geobot., 53, 333−348. DOI: 10.1007/s12224-018-9312-9.

  • Čepčeková, E. (2013). Atmospheric precipitation and storms (in Slovak). In S. Bičárová (Ed.), Observatory of SAS at Skalnaté pleso. 70 years of meteorological measurements (pp. 37–42). Stará Lesná: Geofyzikálny ústav SAV.

  • Dahl, E. (1998). The phytogeography of Northern Europe: British Isles, Fennoscandia, and Adjacent Areas. Cambridge: Cambridge University Press.

  • Daniēls, F.J.A., Molenaar, J.G., Chytrý, M. & Tichý L. (2011). Vegetation change in Southeast Greenland? Tasiilaq revisited after 40 years. Appl. Veg. Sci., 14, 230–241. DOI: 10.1111/j.1654-109X.2010.01107.x.

  • DeCáceres, M. & Legendre P. (2009). Associations between species and groups of sites: indices and statistical inference. Ecology, 90, 3566–3574. DOI: 10.1890/08-1823.1.

  • Ditsch, D.C., Schwab, G., Green, J.D., Johns, J.T., Coleman, R., Hutchens, T. & Piercy L. (2006). Managing steep terrain for livestock forage production. Lexington: College of Agriculture, University of Kentucky.

  • Dúbravcová, Z. (1976). Subalpine and alpine vegetation in Kamenistá and Gáborova dolina valleys (Western Tatras) (in Slovak). Msc, PhD thesis, Faculty of Natural Sciences, Comenius University, Bratislava.

  • Dúbravcová, Z. (2007). Salicetea herbaceae (in Slovak). In J. Kliment & M. Valachovič (Eds.), Plant communities of Slovakia. 4. Alpine vegetation (pp. 251–282). Bratislava: Veda, vydavateľstvo SAV.

  • Dye, D.G. (2002). Variability and trends in the annual snow-cover cycle in Northern Hemisphere land areas, 1972-2000. Hydrol. Process., 16, 3065–3077. DOI: 10.1002/hyp.1089.

  • Ellenberg, H., Weber, H.E., Dull, R., Wirth, W., Werner, W. & Paulissen D. (1992). Zeigerwerte von pflanzen in Mitteleuropa. Scripta Geobotanica, 18, 1–258.

  • Elmendorf, S.C., Henry, G.H.R., Hollister, R.D., Bjork, R.G., Bjorkman, A.D., Callaghan, T.V., Collier, L.S., Cooper, E.J., Cornelissen, J.H.C., Day, T.A., Fosaa, A.M., Gould, W.A., Gretarsdottir, J., Harte, J., Luise, H., Hik, D.S., Hofgaard, A., Jarrad, F., Jonsdottir, I.S., Keuper, F., Klanderud, K., Klein, J.A., Koh, S., Kudo, G., Lang, S.I., Loewen, V., May, J.L., Mercado, J., Michelsen, A., Molau, U., Myers-Smith, I.H., Oberbauer, S.F., Pieper, S., Post, E., Rixen, Ch., Robinson, C.H., Schmidt, N.M., Shaver, G.R., Stenstrom, A., Tolvanen, A., Totland, O., Troxler, T., Wahren, C.-H., Webber, P.J., Welker, J.M. & Wookey P.A. (2012). Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol. Lett., 15, 164–175. DOI : 10.1111/j.1461-0248.2011.01716.x.

  • Elumeeva, T.G., Onipchenko, V.G., Egorov, A.V., Khubiev, A.B., Tekeev, D.K., Soudzilovskaia, N.A. & Cornelissen J.H.C. (2013). Long-term vegetation dynamic in the Northwestern Caucasus: which communities are more affected by upward shifts of plant species? Alpine Botany, 123, 77–85. DOI: 10.1007/s00035-013-0122-7.

  • Engler, R., Randin, C.F., Thuiller, W., Dullinger, S., Zimmermann, N.E., Araujo, M.B., Pearman, P.B., Le Lay, G., Piedallu, C., Albert, C.H., Choler, P., Coldea, G., De Lamo, X., Dirnböck, T., Gégout, J.-C., Gómez-García, D., Grytnes, J.-A., Heegaard, E., Høistad, F., Nogués-Bravo, D., Normand, S., Puşcaş, M., Sebastiá, M.-T., Stanisci, A., Theurillat, J.-P., Trivedi, M.R., Vittoz, P. & Guisan A. (2011). 21st century climate change threatens mountain flora unequally across Europe. Glob. Change Biol., 17, 2330–2341. DOI: 10.1111/j.1365-2486.2010.02393.x.

  • Erschbamer, B., Unterluggauer, P., Winkler, E.& Mallaun M. (2011). Changes in plant species diversity revealed by long-term monitoring on mountain summits in the Dolomites (northern Italy). Preslia, 83, 387–401.

  • Fabiszewski, J. & Wojtuń B. (2001). Contemporary floristic changes in the Karkonosze Mts. Acta Soc. Bot. Pol., 70, 237–245. DOI: 10.5586/asbp.2001.031.

  • Gellman, A. & Hill J. (2007). Data analysis using regression and multilevel/hierarchical models. Cambridge: Cambridge University Press.

  • Grytnes, J.-A., Kapfer, J., Jurasinski, G., Birks, H.H., Henriksen, H., Klanderud, K., Odland, A., Ohlson, M., Wipf, S. & Birks H.J.B. (2014). Identifying the driving factors behind observed elevational range shifts on European mountains. Glob. Ecol. Biogeogr., 23, 876–884. DOI : 10.1111/geb.12170.

  • Hebák, P., Hustopecký, J., Pecáková, I., Plašil, M., Průša, M., Řezanková, H., Vlach, P. & Svobodová A. (2007). Multivare statistical methods (3) (in Czech). Praha: Informatorium.

  • Hegedüšová, K. (2007). Central database of phytosociological samples (CDF) in Slovakia (in Slovak). Bulletin Slovenskej Botanickej Spoločnosti, 29, 124–129.

  • Hennekens, S. & Schaminée J.H.J. (2001). TURBOVEG, a comprehensive data base management system for vegetation data. J.Veg.Sci., 12. 589–591. DOI: 10.2307/3237010.

  • Hill, M.O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology, 54, 427–432. DOI: 10.2307/1934352.

  • Hill, M.O., Evans, D.F. & Bell S.A. (1992). Long-term effects of excluding sheep from hill pastures in north Wales. J. Ecol., 80, 1–13. DOI: 10.2307/2261058.

  • Holzinger, B., Hülber, K., Camenisch, M., Grabherr G. (2008). Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates. Plant Ecol., 195, 179–196. DOI: 10.1007/s11258-007-9314-9.

  • Horák, J. (1970). Geobiocoenosis of timber line. Part I. – Western Tatras, Jamnická and Račková dolina valleys (in Czech). Brno: University of Agriculture.

  • Hulme, P.D., Pakeman, R.J., Torvell, L., Fischer, J.M. & Gordon I.J. (1999). The effects of controlled sheep grazing on the dynamics of upland Agrostis-Festuca grassland. J. Appl. Ecol., 36, 886–900. DOI: 10.1046/j.1365-2664.1999.00452.x.

  • Jarolímek, I., Šibík, J., Hegedüšová, K., Janišová, M., Kliment, J., Kučera, P., Majeková, J., Michalková, D., Sadloňová, J., Šibíková, J., Škodová, I., Uhlířová, J., Ujházy, K., Ujházyová, M., Valachovič, M. & Zaliberová M. (2008). A list of vegetation units of Slovakia. In I. Jarolímek & J. Šibík (Eds.), Diagnostic, constant and dominant species of higher vegetation units of Slovakia (pp. 295−329). Bratislava: Veda, vydavateľstvo SAV

  • Jurasinski, G. & Kreyling J. (2007). Upward shift of alpine plants increases floristic similarity of mountain summits. J. Veg. Sci., 18, 711–718. DOI: 10.1111/j.1654-1103.2007.tb02585.x.

  • Kanka, R., Barančok, P. & Krajčí J. (2011). Research of the vascular plants diversity in alpine belt of the Tatry Mts. as a platform for monitoring of the climate changes (in Slovak). Životné Prostredie, 45, 89−92.

  • Kapfer, J., Virtanen, R. & Grytnes J.-A. (2012). Changes in arctic vegetation on Jan Mayen Island over 19 and 80 years. J. Veg. Sci., 23, 771–781. DOI: 10.1111/j.1654-1103.2012.01395.x.

  • Klanderud, K. & Birks H. (2003). Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. Holocene, 13, 1–6. DOI : 10.1191/0959683603hl589ft.

  • Klein, J.A., Harte, J. & Zhao X.Q. (2004). Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol. Lett., 7, 1170–1179. DOI: 10.1111/j.1461-0248.2004.00677.x.

  • Kliment, J. & Valachovič M. (Eds.) (2007). Plant communities of Slovakia. 4. Alpine vegetation (in Slovak). Bratislava: Veda, vydavateľstvo SAV.

  • Kobiv, Y. & Nesteruk Y. (2001). Pedicularis oederi (Scrophulariaceae) in the Chornohora Mts (Ukrainian Carpathians): distribution, biology, ecology and threat. Polish Bot. J., 46, 241–250.

  • Kobiv, Y. (2014). Response of rare plant species to current changes of vegetation in the Ukrainian Carpathians. Forum Carpaticum 2014: local responses to global challenges (pp. 56–58). Lviv.

  • Kobiv, Y. (2016). Saxifraga aizoides (Saxifragaceae) in Ukraine. Polish Bot. J., 61, 65–71. DOI: 10.1515/pbj-2016-0004.

  • Kobiv, Y. (2017). Response of rare alpine plant species to climate change in the Ukrainian Carpathians. Folia Geobot., 52, 217–226. DOI: 10.1007/s12224-016-9270-z.

  • Kobiv, Y. (2018). Trends in population size of rare plant species in the alpine habitats of the Ukrainian Carpathians under climate change. Diversity, 10(3), 62. DOI: 10.3390/d10030062.

  • Kollár, J., Kanka, R. & Barančok P. (2016). Sites of the GLORIA Initiative in Slovakia Included into LTER Network (in Slovak). Životné Prostredie, 50, 51–53.

  • Korzeniak, J. (2016). Mountain Nardus stricta grasslands as a relic of past farming – the effects of grazing abandonment in relation to elevation and spatial scale. Folia Geobot., 51, 93–113. DOI : 10.1007/s12224-016-9246-z.

  • Krajina, V. (1933). Die Pflanzengesellschaften des Mlynica-Tales in den Vysoké Tatry (Hohe Tatra). Beih. Bot. Centralbl., 51, 774−957.

  • Kucharzyk, S. & Augustyn M. (2010). Stability of mountain glades in the Bieszczady National Park (in Polish). Roczniki Bieszczadzkie, 18, 45–58.

  • Kudernatsch, T., Beck, S., Krenzer, M., Fischer, A., Bernhardt, M., Franz, H., Vogel, M. & Abs C. (2005). Recent changes in species composition and species richness of alpine grasslands in Berchtesgaden biosphere reserve and national park. 2nd and 3rd GLOCHAMORE workshops (pp. 103–115). L’Aquila.

  • Kudo, G., Amagai, Y., Hoshino, B. & Kaneko M. (2011). Invasion of dwarf bamboo into alpine snow-meadows in northern Japan: pattern of expansion and impact on species diversity. Ecology and Evolution, 1, 85–96. DOI: 10.1002/ece3.9.

  • Kyyak, V., Bilonoha, V., Dmytrach, R., Gynda, L., Nesteruk, Y. & Shtupun V. (2014). Changes in plant population pattern under the natural and man-induced ecosystem transformations of high mountain zone of Ukrainian Carpathians. Forum Carpaticum 2014: local responses to global challenges (pp. 58–60). Lviv.

  • Marhold, K. & Hindák F. (Eds.) (1998). Checklist of non-vascular and vascular plants of Slovakia. Bratislava: Veda, vydavateľstvo SAV.

  • Matteodo, M., Wipf, S., Stöckli, W., Rixen, C. & Vittoz P. (2013). Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environmental Research Letters, 8, 024043. DOI: 10.1088/1748-9326/8/2/024043.

  • Matteodo, M., Ammann, K., Verrecchia, E.P. & Vittoz P. (2016). Snowbeds are more affected than other subalpine-alpine plant communities by climate change in the Swiss Alps. Ecology and Evolution, 6, 6969 – 6982. DOI: 10.1002/ece3.2354.

  • Micu, D. (2009). Snow pack in the Romanian Carpathians under changing climatic conditions. Meteorology and Atmospheric Physics, 105, 1–16. DOI: 10.1007/s00703-009-0035-6.

  • Nemčok, J. (1994). Geological bedrock (in Slovak). In I. Vološčuk (Ed.), Tatras National Park. Biosphere Reserve (pp. 14–24). Martin: GRADUS.

  • Norton, L.R., Murphy, J., Reynolds, B., Marks, S. & Mackey E.C. (2009). Countryside survey: Scotland results from 2007. Battleby: NERC Centre for Ecology and Hydrology & The Scottish Government, Scottish Natural Heritage.

  • Odland, A., Høitomt, T. & Olsen S.L. (2010). Increasing vascular plant richness on 13 high mountain summits in southern Norway since the early 1970s. Arcti. Antarct. Alp. Res., 42, 458–470. DOI: 10.1657/1938-4246-42.4.458.

  • Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O´Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E. & Wagner H. (2017). Vegan: Community ecology package. R package version 2.4-4.

  • Olsen, S.L. & Klanderud K. (2014). Biotic interactions limit species richness in an alpine plant community, especially under experimental warming. Oikos, 123, 71–78. DOI: 10.1111/j.1600-0706.2013.00336.x.

  • Pakeman, R.J. (2004). Consistency of plant species and trait responses to grazing along a productivity gradient: A multi-site analysis. J. Ecol., 92, 893–905. DOI: 10.1111/j.0022-0477.2004.00928.x.

  • Palaj, A. & Kollár J. (2017). Contribution to the knowledge of the alpine vegetation of the Western Tatras (in Slovak). Phytopedon, 16(1), 9–13.

  • Palaj, A. & Kollár J. (2018). Changes in alpine vegetation over 50 years in the Western Tatras (Slovakia). Ekológia (Bratislava), 37(2), 122−133. DOI: 10.2478/eko-2018-0012.

  • Patsias, K. & Bruelheide H. (2013). Climate change – Bad news for montane forest herb layer species? Acta Oecol., 50, 10−19. DOI: 10.1016/j.actao.2013.02.004.

  • Pauli, H., Gottfried, M., Reiter, K., Klettner, C. & Grabherr G. (2007). Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Global Change Biology, 13, 147–156. DOI: 10.1111/j.1365-2486.2006.01282.x.

  • Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Alonso, J.L.B., Coldea, G., Dick, J., Erschbamer, B., Calzado, F.R., Ghosn, D., Holten, J.I., Kanka, R., Kazakis, G., Kollar, J., Larsson, P., Moiseev, P., Moiseev, D., Molau, U., Mesa, J.M., Nagy, L., Pelino, G., Puşcaş, M., Rossi, G., Stanisci, A., Syverhuset, A.O., Theurillat, J.P., Tomaselli, M., Unterluggauer, P., Villar, L., Vittoz, P. & Grabherr G. (2012). Recent plant diversity changes on Europe’s Mountain Summits. Science, 336(6079), 353–355. DOI : 10.1126/science.1219033.

  • Pickering, C., Green, K., Barros, A.A. & Venn S. (2014). A resurvey of late-lying snow patches reveals changes in both species and functional composition across snowmelt zones. Alpine Botany, 124, 93–103. DOI: 10.1007/s00035-014-0140-0.

  • Pielou, E.C. (1966). The measurement of diversity in different types of biological collections. J. Theor. Biol., 13, 131–144. DOI: 10.1016/0022-5193(66)90013-0.

  • Plesník, P. (1974). Physical geography (in Slovak). In M. Konček (Ed.), Tatras climate (pp. 17–26). Bratislava: Veda, vydavateľstvo SAV.

  • Press, M.C., Potter, J.A., Burke, M.J.W., Callaghan, T.V. & Lee J.A. (1998). Responses of a subarctic dwarf shrub heath community to simulated environmental change. J. Ecol., 86, 315–327. DOI: 10.1046/j.1365-2745.1998.00261.x.

  • QGIS Development Team (2019). QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org

  • R Core Team (2017). R: A language and environment for statistical computing (online). Vienna: R Foundation for Statistical Computing. https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing

  • Ross, L.C., Woodin, S.J., Hester, A.J., Thompson, D.B.A. & Birks H.J.B. (2012). Biotic homogenization of upland vegetation: patterns and drivers at multiple spatial scales over five decades. J. Veg. Sci., 23, 755–770. DOI: 10.1111/j.1654-1103.2012.01390.x.

  • Sammul, M., Kull, K., Oksanen, L. & Veromann P. (2000). Competition intensity and its importance: results of field experiments with Anthoxanthum odoratum. Oecologia, 125, 18-25. DOI: 10.1007/PL00008887.

  • Sandvik, S.M. & Odland A. (2014). Changes in alpine snowbed-wetland vegetation over three decades in northern Norway. Nord. J. Bot., 32, 377–384. DOI: 10.1111/j.1756-1051.2013.00249.x.

  • Speed, J.D.M., Martinsen, V., Mysterud, A., Mulder, J., Holand, O. & Austrheim G. (2014). Long-term increase in aboveground carbon stocks following exclusion of grazers and forest establishment in an alpine ecosystem. Ecosystems, 17, 1138–1150. DOI : 10.1007/s10021-014-9784-2.

  • Stöckli, V., Wipf, S., Nilsson, C. & Rixen C. (2011). Using historical plant surveys to track biodiversity on mountain summits. Plant Ecol. Divers, 4, 415–425. DOI: 10.1080/17550874.2011.651504.

  • Šibík, J. (2012). Slovak vegetation database. In J. Dengler, J. Oldeland, F. Jansen, M. Chytry, J. Ewald, M. Finckh, F. Glockler, G. Lopez-Gonzalez, R.K. Peet & J.H.J. Schaminee (Eds.), Vegetation databases for the 21st century. Bio-diversity & Ecology, 4(1), 429–429. DOI : 10.7809/b-e.00216.

  • Tichý, L. (2002). JUIC E, software for vegetation classification. J. Veg. Sci., 13, 451–453. DOI : 10.1111/j.1654-1103.2002. tb02069.x.

  • Tilman, D. (1988). Plant strategies and the dynamics and structure of plant communities. Princeton: Princeton University Press.

  • Turečková, J. (1974). Subalpine and alpine vegetation of Jamnícka dolina valley (Western Tatras) (in Slovak). Diploma work (msc.), Faculty of Natural Sciences, Comenius University, Bratislava.

  • Vanneste, T., Michelsen, O., Graae, B.J., Kyrkjeeide, M.O., Holien, H., Hassel, K., Lindmo, S., Kapas, R.E. & De Frenne P. (2017). Impact of climate change on alpine vegetation of mountain summits in Norway. Ecol. Res., 32, 579–593. DOI : 10.1007/s11284-017-1472-1.

  • Vassilev, K., Pedashenko, H., Nikolov, S.C., Apostolova, I. & Dengler J. (2011). Effect of land abandonment on the vegetation of upland semi-natural grasslands in the Western Balkan Mts., Bulgaria. Plant Biosyst., 145, 654–665. DOI: 10.1080/11263504.2011.601337.

  • Velev, N. & Apostolova I. (2008). Successional changes of Nardus stricta communities in the Central Balkan Range (Bulgaria). Phytol. Balc., 14(1),75–84.

  • Virtanen, R., Eskelinen, A. & Gaare E. (2003). Long-term changes in alpine plant communities in Norway and Finland. In L. Nagy, G. Grabherr, Ch. Korner & D.B.A. Thompson (Eds.), Alpine biodiversity in Europe (pp. 411–422). Berlin: Springer-Verlag.

  • Vittoz, P., Bodin, J., Ungricht, S., Burga, C. & Walther G. R. (2008). One century of vegetation change on Isla Persa, a nunatak in the Bernina massif in the Swiss Alps. J. Veg. Sci., 19, 671–680. DOI: 10.3170/2008-8-18434.

  • Vittoz, P., Randin, C., Dutoit, A., Bonnet, F. & Hegg O. (2009). Low impact of climate change on subalpine grasslands in the Swiss Northern Alps. Glob. Change Biol., 15, 209–220. DOI: 10.1111/j.1365-2486.2008.01707.x.

  • Weselovska, M. (2009). Changes in meadow vegetation of the Western Tatra Mts and their foreland in the last half century (in Polish). In M. Guzik (Ed.), Long-term changes in nature and management of Tatra National Park (pp. 91−104). Zakopane: Wydawnictwa Tatrzańskiego Parku Narodowego.

  • Wickham, H. (2007). Reshaping data with the reshape package. Journal of Statistical Software, 21(12), 1−20. http://www.jstatsoft.org/

  • Wilcox, B.P. & Wood K.M. (1988). Hydrologic impacts of sheep grazing on steep slopes in semiarid rangelands. J. Range Manag., 41(4), 303−306. DOI: 10.2307/3899383.

  • Wilson, S. & Nilsson C. (2009). Arctic alpine vegetation change over 20 years. Glob. Change Biol., 15, 1676–1684. DOI: 10.1111/j.1365-2486.2009.01896.x.

  • Windmaißer, T. & Reisch C. (2013). Long-term study of an alpine grassland: local constancy in times of global change. Alpine Botany, 123, 1–6. DOI: 10.1007/s00035-013-0112-9.

  • Winter, B. (2013). Linear models and linear mixed effects models in R with linguistic applications. arXiv:1308.5499. http://arxiv.org/pdf/1308.5499.pdf

OPEN ACCESS

Journal + Issues

Search