Floristic Biodiversity of Weed Communities in Arable Lands of Istria Peninsula (From 2005 to 2017)

Open access

Abstract

This paper analyses the floristic biodiversity of weed communities in the arable lands of the Istrian peninsula during a twelve year period (2005–2017). A total of 50 fields were surveyed for each sampling time using the seven-degree Braun-Blanquet cover abundance scale in the following agricultural categories: a) permanent crops (vineyards/olive groves), b) alfalfa fields, c) cereals, d) row crops and e) ruderal areas. The taxonomic identification was performed during the full development of vegetation, for cereals in June and July, and for the rest – in August and September. A total of 175 weed species were determined during both study periods with Asteraceae and Poaceae families as the most abundant. Altogether, therophytes were dominant in both surveys, followed by hemycryptophytes and geophytes. Variations in species composition were visible in both study periods (2005 and 2017) as well as in the selected habitat types. Exclusive species were found in addition to those that were common for both surveys. Changes in species composition between 2005 and 2017 referred to the difference in row spacing in earlier period, and ruderal vs. agricultural habitats in the recent survey. The differences in phenological traits between the past and present surveys were greatest for germination season in permanent crops and row crops, flowering start for permanent crops, flowering period for ruderal area and weed height for permanent crops. Significant differences between the past and present survey for other plant traits did not occur.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Baessler C. & Klotz S. (2006). Effect of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agric. Ecosyst. Environ. 115 43−50. DOI: 10.1016/j.agee.2005.12.007.

  • Barančok P. & Barančoková M. (2016). Historical changes in dispersed kopanitse land type and changes in use of agricultural land on Kysuce region example. Ekológia (Bratislava) 35 371−391. DOI: 10.1515/eko-2016-0030.

  • Booth B.D. & Swanton C.J. (2002). Assembly theory applied to weed communities. Weed Sci. 50 2−13. DOI: 10.1614/0043-1745(2002)050[0002:AIATAT]2.0.CO;2.

  • Braun-Blanquet J. (1964). Pfnanzensoziologie. Grundzüge der vegetationskunde. Wien New York: Springer Verlag.

  • Burda R. (2018). Alien plant species in the agricultural habitats of Ukraine: diversity and risk assessment. Ekológia (Bratislava) 37 24−31. DOI: 10.2478/eko-2018-0003.

  • Chamorro L. Masalles R.M. & Sans F.X. (2016). Arable weed decline in Northeast Spain: Does organic farming recover functional biodiversity? Agric. Ecosyst. Environ. 223 1−9. DOI: 10.1016/j.agee.2015.11.027.

  • Cirujeda A. Aibar J. & Zaragoza C. (2011). Remarkable changes of weed species in Spanish cereal fields from 1976 to 2007. Agronomy for Sustainable Development 31 675−688. DOI: 10.1007/s13593-011-0030-4

  • Crawley M.J. (2004). Timing of disturbance and coexistence in a species-rich ruderal plant community. Ecology 85 3277−3288. DOI: 10.1890/03-0804.

  • Ellenberg H. Weber H.E. Düll R. Wirth W. Werner W. & Paulissen D. (1992). Zeigerwerte von Pflanzen in Mitteleureopa. Scripta Geobotanica 18 1−258.

  • Flohre A. Fischer Ch. Aavik T. Bengtsson J. Berendse F. Bommarco R. Ceryngier P. Clement L.W. Dennis Ch. Eggers S. Emmerson M. Geiger F. Guerrero I. HAwro V. Inchausti P. Liira J. Morales M.B. Onate J.J. Pärt T. Weisser W.W. Winqvist C. Thies C. & Tscharntke T. (2011). Agricultural intensification and biodiversity partitioning in European landscapes comparing plants carabids and birds. Ecol. Appl. 21 (5) 1771−1781. DOI: 10.1890/10-0645.1.

  • Franke A.C. Lotz L.A.P. Van Der Burg W.J. & Van Overbeek L. (2009). The role of arable weed seeds foragroecosystem functioning. Weed Res. 49 131−141. DOI: 10.1111/j.1365-3180.2009.00692.

  • Fried G. Norton L.R. & Reboud X. (2008). Environmental and management factors determining weed species composition and diversity in France. Agric. Ecosyst. Environ. 128 68−76. DOI: 10.1016/j.agee.2008.05.003.

  • Hallgren E. Palmer M.W. & Millberg P. (1999). Data diving with cross-validation: an investigation of broad scale gradients in Swedish weed communitied. J. Ecol. 87 1037−1051. DOI: 10.1046/j.1365-2745.1999.00413.x.

  • Harker K.N. O’Donovan J.T. Turkington T. K. Blackshaw R. E. Lupwai N.Z. Smith E.G. Johnson E.N. Pageau D. Shirtliffe S.J. Gulden R.H. Rowsell J. Hall L.M. &Willenborg C.J. (2016).Diverse Rotations and Optimal Cultural Practices Control Wild Oat (Avena fatua). Weed Sci. 64 170−180. DOI: 10.1614/WS-D-15-00133.1.

  • Holm L.G. Plucknett D.L. Pancho J.V. & Herberger J.P. (1977). The World’s Worst Weeds: Distribution and biology. Honolulu: The University Press of Hawaii.

  • Holm L.G. Pancho J.V. Verberger J.P. & Plucknett D.L. (1991). A geographical atlas of world weeds. Malabar: Krieger Publisher Company.

  • Jurado-Exposito M. Lopez-Granados F. Gonzales-Andujar J.L. & Garcia-Torres L. (2004). Spatial and temporal analysis of Convolvulus arvensis L. population over four growing seasons. Eur. J. Agron. 21 287−296. DOI: 10.1016/j.eja.2003.10.001.

  • Karoglan Kontić J. Maletić E. Kozina B. & Mirošević N. (1999). Utjecaj zatravljivanja međurednog prostora na značajke vinove loze. Agric. Conspec. Sci. 64(3) 187−198.

  • Kolarova M. Tyšer L. & Soukup J. (2013). Diversity of current weed vegetation on arable land in selected areas of the Czech Republic. Plant Soil and Environment 59 208−213. DOI: 10.17221/783/2012-PSE.

  • Lososová Z. Chytrý M. Cimalová Š. Kropáč Z. Otýpková Z. Pyšek P. & Tichý L. (2004). Weed vegetation of arable land in Central Europe: Gradients of diversity and species composition. J. Veg. Sci. 15 415−422. DOI: 10.1111/j.1654-1103.2004.tb02279.x.

  • Pinke Gy. Pál R. & Botta-Dukát Z. (2010). Effect of environmental factors on weed species composition of cereal and stubble fields in western Hungary. Central European Journal Biology 5 283−292. DOI: 10.2478/s11535-009-0079-0.

  • Raunkiær C. (1934). The life-forms of plants and statistical plant geography. Oxford: Oxford University Press.

  • Richner N. Holderegger R. Linder H.P. & Walter T. (2015). Reviewing changes in the arable flora of Europe: a meta analysis. Weed Res. 55(1) 1−13. DOI: 10.1111/wre.12123.

  • Rotches-Ribalta R. Blanco-Moreno J. Armengot L. Jose-Maria L. & Sans F.X. (2015). Which conditions determine the presence of rare weeds in arable fields? Agric. Ecosyst. Environ. 203 55−61. DOI: 10.1016j.agee.2015.01.022.

  • Smith R.G. (2006). Timing of tillage is an important filter on the assembly of weed communities. Weed Sci. 54 705−712. DOI: 10.1614/WS-05-177R1.1.

  • Storkey J. (2006). A functional group approach to the management of UK arable weeds to support biological diversity. Weed Res. 46 513−522. DOI: 10.1111j.1365-3180.2006.00528.

  • Storkey J. Meyer S. Still K.S. & Leuschner C. (2012). The impact of agricultural intensification and land-use change on the European arable flora. Proc. R. Soc. Lond. B Biol. Sci. 279(1732) 1421−1429. DOI: 10.1098/rspb.2011.1686.

  • Sutcliffe O.L. & Kay Q.O.N. (2000). Changes in the arable flora of central southern England since the 1960s. Biol. Conserv. 93 1–8. DOI: 10.1016S0006-3207(99)00119-6.

  • Sutherland S. (2004). What makes a weed a weed: life history traits of native and non indigenous plants in the USA. Oecologia 141 24–39. DOI: 10.1007s00442-004-1628.

  • Teer Braak C.J.F. & Smilauer P. (2012). Canoco Reference Manual and User’s Guide. Software for Ordination (version 5.0). Wageningen České Budějovice: Biometris.

  • Thompson K. Bakker J.P. Bekker R.M. & Hodgson J.G. (1998). Ecological correlates of seed persistence in soil in the north-west European flora. J. Ecol. 86 163−169. DOI: 10.1046/j.1365-2745.1998.00240.x.

  • Tilman D. Cassman K. G. Matson P.A. Naylor R. & Polasky S. (2002). Agricultural sustainability and intensive production practices. Nature 418 (6898) 671−677. DOI: 10.1038/nature01014.

  • van der Maarel E. (1979). Transformation of cover-abundance values in phyto- sociology and its effect on community similarity. Vegetatio 39 97−114. https://www.jstor.org/stable/20145666.

  • Webster T.M. & Coble H.D. (1997). Changes in the weed species composition of the Southern United States: 1974 to 1995. Weed Technol. 11 308−317. DOI: 10.1017/S0890037X00043001.

Search
Journal information
Impact Factor


CiteScore 2018: 0.77

SCImago Journal Rank (SJR) 2018: 0.283
Source Normalized Impact per Paper (SNIP) 2018: 0.534

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 92 92 12
PDF Downloads 72 72 5