The Role of Edaphic and Vegetation Factors in Structuring Beta Diversity of the Soil Macrofauna Community of the Dnipro River Arena Terrace

Open access


The article presents the results of evaluation of the role of edaphic and vegetation factors on beta diversity of soil macrofauna by means of the MDM-approach. The multinomial diversity model (MDM) is a method for relating the Shannon diversity to ecological factors. The research was conducted in the ‘Dnipro-Orils’kiy’ Nature Reserve (Ukraine). The research polygon was laid in the forest within the Orlova ravine (48º31’13 “N, 34º48”15 “E). The study site comprises 1.0 ha of deciduous woodland bordered by an area of herbaceous cover within the ravine. In the soil of the studied polygon, 38 species of soil invertebrates were identified, which characterizes the gamma diversity. Alpha diversity, or the number of species on average at each sample point is 4.3. Beta diversity is 8.8. The principal component analysis of the edaphic parameters revealed four statistically significant principal components. For vegetation characteristics, six statistically significant principal components were identified. The sequential analysis of the effects shows that edaphic factors accounted for 20.9% (0.81 bit) of the available entropy (1.71–0.91). The largest decrease in the community entropy takes place under the action of the principal components 2 and 3 (0.06 bit and 0.05, respectively). A permutation test showed that these effects are statistically significant. In turn, 28.4% of the community β-diversity is attributable to vegetation factors. The greatest decrease in community entropy is related to the principal vegetation components 1, 3 and 4 (0.07, 0.05 and 0.04 bits, respectively). A permutation test indicated that this effect is statistically reliable. Geostatistical models substantially describe the varying effects on the beta-diversity of edaphic principal components 1 and 2, and the vegetation principal components 1 and 3. It was found that edaphic and plant factors play an important role in structuring the communities of soil macrofauna on the level of beta diversity. Community sensitivity to environmental factors varies in space and is spatially structured. For different environmental factors, specific spatial patterns of community sensitivity are allocated. Beta diversity may be due to the fact that the species of soil macrofauna communities also vary in the degree of sensitivity to various environmental factors. The species of soil microfauna are also divided according to their extent of sensitivity to different ecological factors.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abramowitz M. & Stegun I.E. (1972). Handbook of mathematical functions with formulas graphs and mathematical tables. Washington DC: U.S. Department of Commerce National Bureau of Standards.

  • Alahuhta J. Kosten S. Akasaka M. Auderset D. Azzella M.M. Bolpagni R. Bove C.P. Chambers P.A. Chappuis E. Clayton J. de Winton M. Ecke F. Gacia E. Gecheva G. Grillas P. Hauxwell J. Hellsten S. Hjort J. Hoyer M.V. Ilg C. Kolada A. Kuoppala M. Lauridsen T. Li E.H. Lukács B.A. Mjelde M. Mikulyuk A. Mormul R.P. Nishihiro J. Oertli B. Rhazi L. Rhazi M. Sass L. Schranz C. Søndergaard M. Yamanouchi T. Yu Q. Wang H. Willby N. Zhang X.K. & Heino J. (2017). Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. J. Biogeogr. 44 1758−1769. DOI: 10.1111/jbi.12978.

  • Andreeva R.V. (1990). Identification key to gadfly larvae (in Russian). Kiev: Naukova dumka.

  • Ayuke F.O. Karanja N.K. Muya E.M. Musombi B.K. Munyati J. & Nyamasyo G.H. (2009). Macrofauna diversity and abundance across different land use systems in Embu Kenya. Tropical and Subtropical Agroecosytems 11 371−384.

  • Baselga A. (2010). Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19 134−143. DOI: 10.1111/j.1466-8238.2009.00490.x.

  • Belgard A.L. (1950). The forest vegetation of the south east of the Ukraine (in Russian). Kiev: Kiev University Press.

  • Belgard A.L. (1971). Steppe forestry (in Russian). Moscow: Forest Industry.

  • Berg M.P. & Bengtsson J. (2007). Spatial and temporal variation in food web composition. Oikos 116 1789−1804. DOI: 10.1111/j.0030-1299.2007.15748.x.

  • Berg M.P. (2012). Patterns of biodiversity at fine and small spatial scales. In D.H. Wall R.D. Bardgett V. Behan-Pelle-tier J.E. Herrick T.H. Jones K. Ritz J. Six D.R. Strong & W.H. van der Putten (Eds.) Soil ecology and ecosystem services (pp. 136−152). Oxford: Oxfod University Press.

  • Bockheim J.G. Gennadiyev A.N. Hartemink A.E. & Brevik E.C. (2014). Soil-forming factors and Soil Taxonomy. Geoderma 226−227 231−237. DOI: 10.1016/j.geoderma.2014.02.016.

  • Bonato L. Minelli A. Lopresti M. & Cerretti P. (2014). ChiloKey an interactive identification tool for the geophilomorph centipedes of Europe (Chilopoda Geophilomorpha). ZooKeys 443 1−9. DOI: 10.3897/zookeys.443.7530

  • Burton V.J. & Eggleton P. (2016). Microhabitat heterogeneity enhances soil macrofauna and plant species diversity in an Ash - Field Maple woodland. Eur. J. Soil Biol. 75 97−106. DOI: 10.1016/j.ejsobi.2016.04.012.

  • Buzuk G.N. (2017). Phytoindication using ecological scales and regression analysis: ecological index (in Russian). Vestnik Farmacii 2(76) 31−37.

  • Carpenter D. Hammond P.M. Sherlock E. Lidgett A. Leigh K. & Eggleton P. (2012). Biodiversity of soil macrofauna in the New Forest: a benchmark study across a national park landscape. Biodivers. Conserv. 21 3385−3410. DOI: 10.1007/s10531-012-0369-0.

  • Cesarz S. Fahrenholz N. Migge-Kleian S. Platner C. & Schaefer M. (2007). Earthworm communities in relation to tree diversity in a deciduous forest. Eur. J. Soil Biol. 43 S61−S67. DOI: 10.1016/j.ejsobi.2007.08.003.

  • Cherny N.G. & Golovach S.J. (1993). Millipedes of the lowland territory of Ukraine (in Russian). Kiev.

  • Chust G. Pretus J.L. Ducrot D. Bedo`s A. & Deharveng L. (2003). Response of soil fauna to landscape heterogeneity: determining optimal scales for biodiversity modeling. Conserv. Biol. 17 1712−1723. DOI: 10.1111/j.1523-1739.2003.00564.x.

  • Chust G. Pretus J.L. Ducrot D. & Ventura D. (2004). Scale dependency of insect assemblages in response to landscape pattern. Landsc. Ecol. 19 41−57. DOI: 10.1023/B:LAND.0000018368.99833.f2.

  • Dauber J. Hirsch M. Simmering D. Waldhardt R. Otte A. & Wolters V. (2003). Landscape structure as an indicator of biodiversity: matrix effects on species richness. Agric. Ecosyst. Environ. 98 321−329. DOI: 10.1016/S0167-8809(03)00092-6.

  • Dauber J. Purtauf T. Allspach A. Frisch J. Voigtlander K. & Wolters V. (2005). Local vs. landscape controls on diversity: a test using surface-dwelling soil macroinvertebrates of different mobility. Glob. Ecol. Biogeogr. 14 213−221. DOI: 10.1111/j.1466-822X.2005.00150.x.

  • de Wijs H.J. (1951). Statistics of ore distribution: Part I. Frequency distribution of assay values. Journal of the Royal Netherlands Geological and Mining Society New Series 13 365−375.

  • de Wijs H.J. (1953). Statistics of ore distribution: Part II. Theory of binomial distribution applied to sampling and engineering problems. Journal of the Royal Netherlands Geological and Mining Society New Series 15 12−24.

  • De’ath G. (2012). The multinomial diversity model: Linking shannon diversity to multiple predictors. Ecology 323 116−119. DOI: 10.1890/11-2155.1.

  • De’ath G. (2013). Code for mdm was adapted from multinom in the nnet package. MDM: Multinomial Diversity Model. R package version 1.3.

  • Decaëns T. Jiménez J.J. Gioia C. Measey G.J. & Lavelle P. (2006). The values of soil animals for conservation biology. Eur. J. Soil Biol. 42(1) S23−S38. DOI: 10.1016/j.ejsobi.2006.07.001.

  • Didukh Ya.P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kiev: Phytosociocentre.

  • Didukh Ya.P. (2012). The principles of the bioindication (in Ukranian). Kiev: Naukova dumka.

  • Dinno A. (2012). Paran: Horn’s Test of Principal Components/Factors. R package version 1.5.1.

  • Dokuchaev V.V. (1883). Russian Chernozem. Selected works of V.V. Dokuchaev vol. I. Israel Program for Scientific Translations Jerusalem (translated in 1967).

  • Dolin V.G. (1978). Identification key to larvae of click beetles fauna of the USSR (in Russian). Kiev: Urozhay.

  • Eggleton P. Vanbergen A.J. Jones D.T. Lambert M.C. Rockett C. Hammond P.M. Beccaloni J. Marriott D. Ross E. & Giusti A. (2005). Assemblages of soil macrofauna across a Scottish landuse intensification gradient: influences of habitat quality heterogeneity and area. J. Appl. Ecol. 42 1153−1164. DOI: 10.1111/j.1365-2664.2005.01090.x.

  • Ellenberg H. (1974). Zeigerwerte der Gefässpflanzen Mitteleuropas. Scripta Geobotanica 9 197.

  • Gholami S. Sayad E. Gebbers R. Schirrmann M. Joschko M. & Timmer J. (2016). Spatial analysis of riparian forest soil macrofauna and its relation to abiotic soil properties. Pedobiologia 59(1) 27−36. DOI: 10.1016/j.pedobi.2015.12.003.

  • Gilarov M.S. (1949). Pecularities of the soil as environment and its role in the evolution of insects (in Russian). Moscow.

  • Gilyarov M.S. (Ed.) (1964). Identification key to soil-inhabiting insect larvae (in Russian). Moscow: Nauka.

  • Gongalsky K.B. Gorshkova I.A. Karpov A.I. & Pokarzhevskii A.D. (2008). Do boundaries of soil animal and plant communities coincide? A case study of a Mediterranean forest in Russia. Eur. J. Soil Biol. 44(4) 355−363. DOI: 10.1016/j.ejsobi.2008.04.004.

  • Gongalsky K.B. Zaytsev A.S. & Savin F.A. (2009). Spatial distribution of soil animals: a geostatistical approach. Biology Bulletin Reviews 70(6) 484−494.

  • Gural-Sverlova N.V. & Gural R.I. (2012). Identification book of the terrestrial molluscs of Ukraine (in Ukranian). Lviv.

  • Handcock M.S. & Stein M.L. (1993). A Bayesian analysis of kriging. Technometrics 35 403−410. DOI: 10.2307/1270273.

  • Horn J.L. (1965). A rationale and a test for the number of factors in factor analysis. Psychometrika 30 179−185. DOI: 10.1007/BF02289447.

  • Huston M.A. (1999). Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plants and animals. Oikos 86 393− 401. DOI: 10.2307/3546645.

  • Jabin M. Mohr D. Kappes H. & Topp W. (2004). Influence of deadwood on density of soil macro-arthropods in a managed oakebeech forest. For. Ecol. Manag. 194 61−69. DOI: 10.1016/j.foreco.2004.01.053.

  • Jackson R.B. & Caldwell M.M. (1993). Geostatistical patterns of soil heterogeneity around individual perennial plants. J. Ecol. 81(4) 683−692. DOI: 10.2307/2261666.

  • Jackson R.B. & Caldwell M.M. (1996). Integrating resource heterogeneity and plant plasticity: modeling nitrate and phosphate uptake in a patchy soil environment. J. Ecol. 84 891−903. DOI: 10.2307/2960560.

  • Jenny H. (1941). Factors of soil formation. A system of quantitative pedology. New York: McGraw-Hill.

  • Kabakov O.N. (2006). Scarab beetles of the subfamily Scarabaeinae (Coleoptera: Scarabaeidae) of Russia and adjacent countries (in Russian). Moscow: Partnership Scientific Publications KMK.

  • Kamau S. Barrios E. Karanja N.K. Ayuke F.O. & Lehmann J. (2017). Soil macrofauna abundance under dominant tree species increases along a soil degradation gradient. Soil Biol. Biochem. 112 35−46. DOI: 10.1016/j.soil-bio.2017.04.016.

  • Kirby K.N. & Gerlanc D. (2013). BootES: An R package for bootstrap confidence intervals on effect sizes. Behavior Research Methods 45 905−927. DOI: 10.3758/s13428-013-0330-5.

  • Korboulewsky N.B. Pereza G. & Chauvat M. (2016). How tree diversity affects soil fauna diversity: a review. Soil Biol. Biochem. 94 94−106. DOI: 10.1016/j.soilbio.2015.11.02.

  • Krivolutsky D.A. (1994). Soil fauna in ecological control (in Russian). Moscow: Nauka.

  • Krivosheina M.G. (2012). Identification book of the families and genera of Palaearctic dipteran insects of the suborder Nematocera based on larvae (in Russian). Moscow: Partnership Scientific Publications KMK.

  • Kryzhanovsky O.L. (1964). Carabidae - Ground Beetles (in Russian). In G.A. Bey-Bienko (Ed.) Insects of the European part of the USSR. V. 5. Beetles and Strepsiptera (pp. 23−68).

  • Kunah O.N. Zhukov O.V. & Pahomov A.Y. (2010). Earthworm morphology (Lumbricidae) (in Ukranian). Dnipropetrovsk.

  • Lavelle P. (1997). Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv. Ecol. Res. 27 93−132.

  • Lavelle P. (2002). Functional domains in soils. Ecol. Res. 17 441−450. DOI: 10.1046/j.1440-1703.2002.00509.x.

  • Lavelle P. Decaëns T. Aubert M. Barota S. Blouin M. Bureau F. Margerie P. Mora P. & Rossi J.-P. (2006). Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 42(1) S3−S15. DOI: 10.1016/j.ejsobi.2006.10.002.

  • Legendre P. Borcard D. & Peres-Neto P.R. (2005). Analyzing beta diversity: Partitioning the spatial variation of community composition data. Ecol. Monogr. 75 435−450. DOI: 10.1890/05-0549.

  • Lukac M. (2017). Soil biodiversity and environmental change in European forests. Central European Forestry Journal 63 59−65. DOI: 10.1515/forj-2017-0010.

  • Marcon E. & Herault B. (2015). Entropart: An R Package to Measure and Partition Diversity. Journal of Statistical Software 67(8) 1−26. DOI: 10.18637/jss.v067.i08.

  • Matern B. (1986). Spatial variation. Lecture notes in statistics. New York: Springer.

  • Mathieu J. Grimaldi M. Jouquet P. Rouland C. Lavelle P. Desjardins T. & Rossi J.P. (2009). Spatial patterns of grasses influence soil macrofauna biodiversity in Amazonian pastures. Soil Biol. Biochem. 41 586−593. DOI: 10.1016/j.soilbio.2008.12.020.

  • Mathieu J. Rossi J.P. Grimaldi M. Mora P. Lavelle P. & Rouland C. (2004). Biol. Fertil. Soils 40 300. DOI: 10.1007/s00374-004-0777-8.

  • McBratney A.B. & Pringle M.J. (1999). Estimating average and proportional variograms of soil properties and their potential use in precision agriculture. Precision Agriculture 1 125−152. DOI: 10.1023/A:1009995404447.

  • Migge-Kleian S. Cesarz S. Fahrenholz N. Platner C. & Schaefer M. (2007). Earthworm communities in relation to tree diversity in a deciduous forest. Eur. J. Soil Biol. 43 61−67.

  • Minasny B. & McBratney A.B. (2005). The matern function as a general model for soil variograms. Geoderma 128 192−207. DOI: 10.1016/j.geoderma.2005.04.003.

  • Nuutinen V. Butt K.R. Hyväluoma J. Ketoja E. & Mikola J. (2017). Soil faunal and structural responses to the settlement of a semi-sedentary earthworm Lumbricus terrestris in an arable clay field. Soil Biol. Biochem. 115 285−296. DOI: 10.1016/j.soilbio.2017.09.001.

  • Oksanen J. Blanchet F.G. Kindt R. Legendre P. Minchin P.R. O’Hara R.B. Simpson G.L. Solymos P. Stevens M.H.H. & Wagner H. (2017). Community ecology package. R package version 2.4-5.

  • Olff H. & Ritchie M.E. (2002). Fragmented nature: consequences for biodiversity. Landsc. Urban Plann. 58 83−92. DOI: 10.1016/S0169-2046(01)00211-0.

  • Pélissier R. Couteron P. Dray S. & Sabatier D. (2003). Consistency between ordination techniques and diversity measurements: two strategies for species occurrence data. Ecology 84 242−251. DOI: 10.1890/0012-9658(2003)084[0242:CBOTAD]2.0.CO;2.

  • Pennisi B.V. & van Iersel M. (2002). 3 ways to measure medium EC. GMPro 22(1) 46−48.

  • Perel T.S. (1979). Spread and regularity of the distribution of the earthworms of the USSR fauna (in Russian). Moscow: Nauka.

  • Reza S.K. Nayak D.C. Chattopadhyay T. Mukhopadhyay S. Singh S.K. & Srinivasan R. (2016). Spatial distribution of soil physical properties of alluvial soils: a geostatistical approach. Archives of Agronomy and Soil Science 62(7) 972−981. DOI: 10.1080/03650340.2015.1107678.

  • Ribeiro P.J. Christensen O.F. & Diggle P.J. (2003). Geostatistical software - geoR and geoRglm. DSC 2003 Working Papers. Available from:

  • Ribeiro P.J. Jr. & Diggle P.J. (2016). geoR: Analysis of geostatistical data. R package version 1.7-5.2.

  • Rossi J.P. (2003). Clusters in earthworm spatial distribution. Pedobiologia 47(5−6) 490−496. DOI: 10.1078/0031-4056-00218.

  • Rossi J.-R. Lavelle P. & Tondoh J.E. (1996). Statistical tool for soil biology. XI. Autocorrelogram and Mantel test European. J. Soil Biol. 32 195−203.

  • Schmolzer K. (1965). Ordnung Isopoda (Landasseln). Liferung 4 186 S. Liferung 5 468 S. Berlin: Akademie-Verlag.

  • Soinenen J. Lennon J.J. & Hillebrand H. (2007). A multivariate analysis of beta diversity across organisms and environments. Ecology 88 2830−2838. DOI: 10.1890/06-1730.1.

  • Soininen J. Heino J. & Wang J. (2017). A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Glob. Ecol. Biogeogr. 27 96−109. DOI: 10.1111/geb.12660.

  • Sokolova T.A. (2011). Rare plant communities of steppe sandy forests vegetation in the north of the Rostov region. Southern scientific center of the Russian Academy of Sciences 7(4) 66−69.

  • Stein M.L. (1999). Interpolation of spatial data: Some theory for Kriging. New York: Springer.

  • Sun B. Zhou S. & Zhao Q. (2003). Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma 115 85−99. DOI: 10.1016/S0016-7061(03)00078-8.

  • Tarasov V.V. (2012). Flora of Dnipropetrovsk and Zaporozhie regions (in Ukranian). Dnipropetrovs: Second ed. Lira.

  • Vadunina A.F. & Korchagina S.A. (1986). Methods for research of physical properties of the soil (in Russian). Moscow: Agropromizdat.

  • Vanbergen A.J. Watt A.D. Mitchell R. Truscott A.M. Palmer S.C. Ivits E. Eggleton P. Jones T.H. & Sousa J.P. (2007). Scale-specific correlations between habitat heterogeneity and soil fauna diversity along a landscape structure gradient. Oecologia 153(3) 713−725. DOI: 10.1007/s00442-007-0766-3.

  • Vašát R. Pavlů L. Borůvka L. Drábek O. & Nikodem A. (2013). Mapping the topsoil pH and humus quality of forest soils in the North Bohemian Jizerské hory Mts. region with ordinary universal and regression kriging: cross-validation comparison. Soil and Water Research 8 97−104.

  • Viana D.S. Figuerola J. Schwenk K. Manca M. Hobæk A. Mjelde M. Preston C. D. Gornall R.J. Croft J.M. King R.A. Green A.J. & Santamaría L. (2016). Assembly mechanisms determining high species turnover in aquatic communities over regional and continental scales. Ecography 39 281−288. DOI: 10.1111/ecog.01231.

  • Vsevolodova-Perel T.S. (1997). Earthworms of the Russian fauna (in Russian). Moscow: Nauka.

  • Warren M.W. & Zou X. (2002). Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico. For. Ecol. Manag. 170 161−171. DOI: 10.1016/S0378-1127(01)00770-8.

  • Webster R. & Oliver M.A. (2001). Geostatistics for environmental scientists. Chichester John Wiley Sons.

  • Whittle P. (1954). On stationary processes in the plane. Biometrika 41 434−449. DOI: 10.1093/biomet/41.3-4.434.

  • Wolters V. (2001). Biodiversity of soil fauna and its function. Eur. J. Soil Biol. 37(4) 221−227. DOI:10.1016/S1164-5563(01)01088-3.

  • Zalesskaya N.T. Identification key of centipedes of the USSR (in Russian). Moscow: Nauka.

  • Zbinden Z.D. & Matthews W.J. (2017). Beta diversity of stream fish assemblages: partitioning variation between spatial and environmental factors. Freshw. Biol. 62 1460−1471. DOI: 10.1111/fwb.12960.

  • Zhukov A.V. (2015). Phoromorphs in ecomorphs system of soil animals. The Journal of V.N.Karazin Kharkiv National UniversitySeries: Biology 25 254−266.

  • Zhukov A. & Zadorozhnaya G. (2016). Spatial heterogeneity of mechanical impedance of a typical chernozem: the ecological approach. Ekológia (Bratislava) 35 263−278. DOI: 10.1515/eko-2016-0021.

Journal information
Impact Factor

CiteScore 2018: 0.77

SCImago Journal Rank (SJR) 2018: 0.283
Source Normalized Impact per Paper (SNIP) 2018: 0.534

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 443 420 15
PDF Downloads 483 463 24