Phytoncide activity of woody plants under the conditions of steppe zone

Svetlana Volodarets 1 , Aleksandr Glukhov 2  and Irina Zaitseva 3
  • 1 Dnipropetrovsk State Agrarian and Economic University, Department of Landscape and Economy, Dnipro, Ukraine
  • 2 Donetsk Botanical Garden, Department of Dendrology and Natural Flora, , Donetsk, Ukraine
  • 3 Oles Honchar Dnipro National University, Department of Plants Physiology and Introduction, Ukraine


The study of phytoncide activity of biogenic volatile organic compounds of woody plants is one of the most important areas of research in plant ecology in urban lands. The aim of this work is to investigate the dependence of the phytoncide activity of some woody plant species from meteorological factors in the urban environment in the steppe zone of Ukraine. The objectives of the investigation were 28 species of trees and shrubs. The air temperature is indicated to be a major factor for drought-resistant and some medium drought-resistant species (Populus simonii Carrière, Armeniaca vulgaris L., Robinia pseudoacacia L., Acer pseudoplatanus L., Malus niedzwetzkyana Dieck). The phytoncide activity of low and medium drought-resistant species (Viburnum opulus L., Acer sacharinnum L.) depends on air humidity and total monthly precipitation. The obtained results make it possible to predict changes in the phytoncide activity of woody plants, when selecting the assortment of species for phyto-optimization of technogenic environment.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Davison, B., Taipale, R., Langford, B., Misztal, P., Fares, S., Matteucci, G., Loreto, F., Cape, J.N., Rinne, J. & Hewitt C.N. (2009). Concentrations and fluxes of biogenic volatile organic compounds above a Mediterranean macchia ecosystem in western Italy. Biogeosciences, 6, 1655–1670. DOI: 10.5194/bg-6-1655-2009.

  • Dewulf, J., Joó, É., Van Langenhove, H., Pokorska, O., Van Langenhove, H., Steppe, K., Lemeur, R., Šimpraga, M., Verbeeck, H., Bloemen, J., Demarcke, M., Amelynck, C., Schoon, N., Müller, J.-F., Laffineur, Q., Aubinet, M. & Heinesch B. (2012). Impact of phenology and environmental conditions on BVOC emissions from forest ecosystems IMPECVOC. Final Report. Brussels: Belgian Science Policy (Research Programme Science for a Sustainable Development).

  • Duhl, T.R., Helmig, D. & Guenther A. (2008). Sesquiterpene emissions from vegetation: a review. Biogeosciences, 5, 761–777. DOI: 10.5194/bg-5-761-2008.

  • Fowler, D. (2002) Pollutant deposition and uptake be vegetation In J.N.D. Dell & M. Treshow (Eds.), Air pollution and plant life (pp. 43–69). West Sussex: John Wiley & Sons Ltd.

  • Fuentes, J.D., Lerdau, M., Atkinson, R., Baldocchi, D., Bottenheim, J.W., Ciccioli, P., Lamb, B., Geron, C., Gu, L., Guenther, A., Sharkey, T.D. & Stockwell W. (2000). Biogenic hydrocarbons in the atmospheric boundary layer: A review. Bulletin of the American Meteorological Society 81 (7), 1537–1575.

  • Grodzinskiy, A.M. (1973). Fundamentals of chemical interaction of plants (in Russian). Kiev: Nauk Dumka.

  • Grote, R., Monson, R. & Niinements Ü. (2013). Leaf-level models of constitutive and stress-driven volatile organic compound emissions. In Ü. Niinements & R. Monson (Eds.), Biology, controls and models of tree volatile organic compound emissions (pp. 315–355). Dordrecht: Springer Science and Business Media.

  • Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P.I. & Geron C. (2006). Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics, 6, 3181–3210. DOI: 10.5194/acp-6-3181-2006.

  • Guenther, A.B., Jiang, X., Heald, C.L., Sakulyanontvittaya, T., Duhl, T., Emmons, L.K. & Wang X. (2012). The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5, 1471–1492. DOI: 10.5194/gmd-5-1471-2012.

  • Harley, P., Eller, A., Guenther, A. & Monson R.K. (2014). Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance. Oecologia, 176, 35–55. DOI: 10.1007/s00442-014-3008-5.

  • Harley, P.C. (2013) The roles of stomatal conductance and compound volatility in controlling the emission of volatile organic compounds from leaves biology. In Ü. Niinements & R. Monson (Eds.), Controls and models of tree volatile organic compound emissions (pp. 181–208). Dordrecht: Springer Science and Business Media.

  • Hopke, P.K. (2009). Theory and application of atmospheric source apportionment. In A.H. Legge (Ed.), Air quality and ecological impacts: relating sources to effects (pp. 99–121). Elsevier.

  • Kesselmeier, J. & Staudt M. (1999). Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. Journal of Atmospheric Chemistry, 33, 23−88. DOI: 10.1023/A:1006127516791.

  • Kleist, E., Mentel, T.F., Andres, S., Bohnel, A., Folkers, A., Kiendler-Scharr, A., Rudich, Y., Springer, M., Tillmann, R. & Wildt J. (2012). Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species. Biogeosciences, 9, 5111–5123. DOI: 10.5194/bg-9-5111-2012.

  • Korshikov, I.I. (2004). Stability of plants to technogenic pollutants of the environment (in Russian). Industrial Botany, 4, 46–58.

  • Kulagin, Yu.Z. (1985). Industrial dendroecology and forecasting (in Russian). Moscow: Nauka.

  • Lipinskogo, V.M., Dyachuka, V.A., Babichenko V.M. (Eds.) (2003). Climate of Ukraine (in Ukrainian). Vid–vo Raevskogo. Methodology of phenological observation in the USSR Botanical Gardens (1979). Byul. Gl. Botan. Sada, 113, 3–8.

  • Oderbolz, D.C., Aksoyoglu, S., Keller, J., Barmpadimos, I., Steinbrecher, R., Skjøth, C. A., Plaß-Dülmer, C. & Prévôt A.S.H. (2013). A comprehensive emission inventory of biogenic volatile organic compounds in Europe: improved seasonality and land-cover. Atmospheric Chemistry and Physics, 13, 1689–1712. DOI: 10.5194/acp-13-1689-2013.

  • Pag, A., Bodescu, A., Kännaste, A., Tomescu, D., Niinemets, Ü. & Copolovici L. (2013). Volatile organic compounds emission from Betula verrucosa under drought stress. Scientific Bulletin of ESCORENA, 8, 45–53.

  • Pennuelas, J. & Llusia J. (2001). The complexity of factors driving volatile organic compounds emissions by plants. Biol. Plant. 44(4), 481–487. DOI: 10.1023/A:1013797129428.

  • Polyakov, A.K. (2009). Introduction of woody plants in the conditions of technogenic environment (in Russian). Donetsk: Noulidzh.

  • Roschina, V.V. & Roschina V.D. (2012). Excretory function of higher plants (in Russian). Elektronnoe izdatelstvo “Analiticheskaya mikroskopiya”. Elektronnyiy resurs :

  • Slepyih, V.V. (2004) Natural and antropogenic factors and phytoncide activity of woody plants (in Russian). Lesn. hoz-vo, 6, 17–19.

  • State of the Natural Environment (2010). In S.Tretyakov & G.Averin (Eds.), The land of our concern. Based on material from Reports on the state of the natural environment in Donetsk Oblast (pp. 45–48).

  • Steinbrecher, R., Smiatek, G., Koëble, R., Seufert, G., Theloke, J., Hauff, K., Ciccioli, P., Vautard, R. & Curci G. (2009). Intra- and inter-annual variability of VOC emissions from natural and seminatural vegetation in Europe and neighbouring countries. Atmos. Environ., 43, 1380–1391 DOI: 10.1016/j.atmosenv.2008.09.072.

  • Tokin, B.P. (1980). Medicinal poisons of plants (in Russian). Leningrad.

  • Zaitseva, I.O. (2003). Research of phenorytmics of woody plants (in Ukrainian). Dnipropetrovsk: Dnipropetrovsk National University.


Journal + Issues