Spatiotemporal Dynamics of Soil Penetration Resistance of Recultivated Soil

Open access


This article examines changes in the spatial distribution of soil penetration resistance in ordinary chernozem (Calcic Chernozem) and in the recultivated soil in 2012 and 2014. The measurements were carried out in the field using an Eijkelkamp penetrometer on a regular grid. The depth of measurement was 50 cm, the interval was 5 cm. The indices of variation of soil penetration resistance in space and time have been determined. The degree of spatial dependence of soil penetration resistance has been determined layer by layer. The nature of temporal dynamics of soil penetration resistance of chernozem and technical soil has been described. A significant positive relationship of the structure of chernozem in the two years of the research has been shown. Significant correlations between the data of different years in the technical soil were found to be mostly negative.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Alvarez C.R. Taboada M.A. Gutierrez Boem F.H. Bono A. Fernández P. L. & Prystupa P. (2009). Topsoil properties as affected by tillage systems in the Rolling Pampa Region of Argentina. Soil Sci. Soc. Am. J. 73 1242–1250. DOI: 10.2136/sssaj2008.0246.

  • Anand M. Tucker B.C. & Desrochers R. (2002). Ecological monitoring of terrestrial ecosystem recovery from manmade perturbation: assessing community complexity. In Proceedings of the 10th International Conference on Modelling Monitoring and Management of Air Pollution (pp. 341–350). July 1–3 2002 Segovia Spain. Southampton: WITPress.

  • Andrusevich E.V. & Shtirts Yu.A. (2014). Ecologiocal diversity of vegetation on lithogenic soil in the reclamation land of the Nicopol manganese ore basin. Industrial Botany 14 115–127.

  • Bajla B.C. & Minarik J. (2003). Navrh metody na meranie okamzitej vlhkosti pody u hrot epenetrometra. Acta Technologica Agriculturae 4 93–96.

  • Bengough A.G. Campbell D.J. & O’Sullivan M.F. (2001). Penetrometer techniques in relation to soil compaction and root growth. In K.A. Smith & C.E. Mullins (Eds.) Soil and environmental analysis. Physical methods (pp. 377–403). New York: Marcel Dekker.

  • Bölenius E. Rogstrand G. Arvidsson J. Thylén L. & Stenberg B. (2006). On-the-go measurements of soil penetration resistance on a Swedish Eutric Cambisol. In Proceedings of International Soil Tillage Research Organization 17th Triennal Conference (pp. 867–870). Kiel.

  • Brady N.C. & Weil R.R. (2002). The nature and properties of soils. Upper Saddle River: Prentice Hall.

  • Calderon V.C.A. Martinez M.L.J. & Giraldo Henao R. (2008). Spatial variability of soil properties and yield relationship in a mango crop (Mangifera indica L.). Revista Brasileira de Fruticultura 30(4) 1146–1151. DOI: 10.1590/S0100-29452008000400049.

  • Cecilia M. Jesus H.C. & Cortes C.A. (2012). Soil penetration resistance analysis by multivariate and geostatistical methods. Engenharia Agricola 32(1) 91–101. DOI: 10.1590/S0100-69162012000100010.

  • Chesson P. (2000). Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31 343–366.

  • Chien Y.J. Lee D.Y. Guo H.Y. & Houng K.H. (1997). Geostatistical analysis of soil properties of mid – west Taiwan soils. Soil Sci. 162 291–298.

  • Demidov A.A. Kobets A.S. Gritsan Y.I. & Zukov A.V. (2013). Spatial agroecology and land reclamation: monograph. Dnepropetrovsk: Publishing house ‘Svidler AL’.

  • Diggle P.J. & Ribeiro J.P. Jr. (2007). Model based geostatistics. Sao Paulo: Springer.

  • Ditsch D.C. & Collins M. (2000). Reclamation consideration for pasture and hay lands receiving sixty−six centimeters or more precipitation annually. Reclamation of drastically disturbed lands. Agronomy Monograph (pp. 24–273). Madison: ASA CSSA SSSA.

  • Gerasimova M.I. Stroganova M.N. Mozharova M.V. & Prokofieva T.V. (2003). Anthropogenic soils (genesis geography recultivation) (in Russian). Smolensk: Oykumena.

  • Godefroid S. & Koedam N. (2003). How important are large vs. small forest remnants for the conservation of the woodland flora in an urban context? Glob. Ecol. Biogeogr. 12 287–298. DOI: 10.1046/j.1466-822X.2003.00035.x.

  • Grunwald S. Mc Sweeney K. Rooney D.J. & Lowery B. (2001). Soil layer models created with profile cone penetrometer data. Geoderma 103(1–2) 181–201. DOI: 10.1016/S0016-7061(01)00076-3.

  • Karpachevskij L.O. Zubkova T.A. Tashninova L.N. & Rudenko R.N. (2007). Soil cover and forest biogeoceonosis-parcelar structure (in Russian). Russian Forest Sciences 6 107−113.

  • Langmaack M. Schrader S. Rapp-Bernhardt U. & Kotzke K. (2002). Soil structure rehabilitation of arable soil degraded by compaction. Geoderma 105 141–152. DOI: 10.1016/S0016-7061(01)00097-0.

  • Legendre P. & Fortin M.J. (1989). Spatial pattern and ecological analysis. Vegetatio 80 107–138. DOI: 10.1007/BF00048036.

  • Lipiec J. & Tarkiewicz S. (1990 1991). The influence of water content and bulk density on penetration resistance of two soils. Zeszyty Problemowe Postępów Nauk Rolniczych 338 99–105.

  • Medvedev V.V. (2009). Soil penetration resistance and penetrographs in studies of tillage technologies (in Russian). Eurasian Soil Science 42(3) 299–309. DOI: 10.1134/S1064229309030077.

  • Medvedev V.V. (2014). The contents and laws of soil anthropogenous evolution (in Russian). Gruntoznavstvo (Soil Science) 15(1–2) 17–30. DOI: 10.15421/041402.

  • Montagu K.D. Conroy J.P. & Atwell B.J. (2001). The position of localized soil compaction determines root and subsequent shoot growth responses. J. Exp. Bot. 52 2127–2133. DOI: 10.1093/jexbot/52.364.2127.

  • Nikiforova E.M. & Solntseva N.P (1982). Geochemistry of technogenic flow and aureoles of pollution in coal mining areas (using the Kizelovsky basin as an example) (in Russian). In Geochemistry of landscapes and geography of soils (pp. 100−128). Moscow: MSU.

  • Serafim M.E. Vitorino A.C.T. Peixoto P.P.P. Souza C.M.A. & Carvalho D.F. (2008). Intervalo hidrico otimo em um latossolo vermelho distroferrico sob diferentes sistemas de producao. Engenharia Аgricola 28(4) 654–665. DOI: 10.1590/S0100-69162008000400005.

  • Solntseva N.P. & Rubilina N.E. (1987). Morphology of soils transformed in coal mining. Eurasian Soil Science 2 104−108.

  • Targulian V.O. & Goryachkin S.V. (Eds.) (2008). Soil memory: Soil as a memory of biosphere-geosphere-anthroposphere interactions. Moscov: LKI Publishers.

  • Topp G.C. Lapen D.R. Edwards M.J. & Young G.D. (2003). Laboratory calibration in–field validation and use of a soil penetrometer measuring cone resistance and water content. Vadose Zone Journal 2 633–641. DOI: 10.2136/vzj2003.6330.

  • Uzbek I.Kh. Volokh P.V Dyrda V.I. & Demidov A.A. (2010). Reclamation of disturbed lands as a sustainable development of complex techno-ecosystems: monograph (in Russian). Dnipropetrovsk: Porogi.

  • Umarova A.B. Shein E.V. Milanovskiy E.Yu. & Dembovetskiy A.V. (2013). Specific water regime in technogenic soils: Preferential water flow formation. Procedia Environmental Sciences 19 558–563. DOI:10.1016/j.proenv.2013.06.063

  • Vachel J. & Ehrlich P. (1988). Vyuzifi penetrometricki metody mereni pevnosti zemin v prbzkumech pro odvodneni. Vedpr. Vu zurod. Zemedel. 5 131–140.

  • Vanags C. Minasny B. & McBratney A.B. (2004). The dynamic penetrometer for assessment of soil mechanical resistance. In Supersoil 2004: Proceeding of the 3th Australian New Zealand Conference. University of Sydney Australia. URL:

  • Verones J.V. Carvalho M.P. Dafonte J. Freddi O.S. Vidal Vazquez E. & Ingaramo O.E. (2006). Spatial variability of soil water content and mechanical resistance of Brazilian ferralsol. Soil Tillage Res. 85(1–2) 166–177. DOI:10.1016/j.still.2005.01.018

  • Webster R. & Oliver M.A. (2007). Geostatistics for environmental scientist. Cornwall: John Wiley & Sons.

  • Yeterevska L.V. Momot G.F. & Lehtsier L.V. (2008). Recultivated soils establishment diagnostic eststimation. Gruntoznavstvo (Soil Science) 9(3–4) 147–150.

  • Young G.D. Adams B.A. & Topp G.C. (2000). A portable data collection system for simultaneous cone penetrometer force and volumetric soil water content measurements. Can. J. Soil Sci. 80 23–31. DOI:10.4141/S99-025.

  • Zhukov A.V. Zadorozhnaya G.A. & Lyadskaya I.V. (2013). Aggregate structure of industrial soils of the Nikopol manganese ore basin. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 3(3) 274–286.

  • Zhukov A.V. & Zadorozhnaya G.A. (2015). Ecomorphic organisation of the soil body: geostatistical approach (in Ukrainian). Studia Biologica 9(3–4) 119–128.

  • Zhukov A. & Zadorozhnaya G. (2016). Spatial heterogeneity of mechanical impedance of atypical chernozem: the ecological approach. Ekológia (Bratislava) 35(3) 263–278. DOI: 10.1515/eko-2016-0021.

Journal information
Impact Factor

CiteScore 2018: 0.77

SCImago Journal Rank (SJR) 2018: 0.283
Source Normalized Impact per Paper (SNIP) 2018: 0.534

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 297 124 5
PDF Downloads 160 82 7