Microbial Investigation of Recreation Effects on Water and Soil in the Tatra National Park

Jana Júdová 1 , Veronika Lacušová 2 , Simona Kvasnová 2 , and Juraj Švajda 2
  • 1 Alexander Dubček University of Trenčín, Faculty of Industrial Technologies in Púchov, 020 01, Púchov
  • 2 Matej Bel University, Faculty of Natural Sciences, 974 01, Banská Bystrica

Abstract

Tatra National Park is considered as the most visited protected area in Slovakia. Striking a balance between the preservation of natural resources and opportunities for public recreation often forces responsible authorities to make compromises between visitation impacts and protection. In this case, the microbial investigation of recreation effects on water and soil in the Tatra National Park were studied.

The study areas were two valleys – Malá Studená, accessible by trail from south with higher human impact and visitation, including mountain huts Téryho and Zamkovského chata and Javorová, accessible from the northern part with a low number of visitors. Soil samples were taken from the main path, 30 cm away from it and water samples from or near the main path in both valleys. The selected colonies, after the cultivation on TSA medium were also analysed according to the dry and semi-extraction procedure of MALDI–TOF method. Most of the obtained strains are endospore forming, psychrotolerant species like Pseudomonas, Bacillus or Paenibacillus away of path, which corresponds with the climate and geographical conditions. But, the relatedness of soil sample strains in both valleys increases with rising altitude, with distance away from path; in contrast, the relatedness of water samples strains in both valleys increases with increasing distance sample areas from chalet and frequent visitors’ places. Water and soil samples were processed for community level physiological profiling using Biolog EcoPlates. The obtained results of carbon source utilization abilities of bacterial communities in both valleys suggested lower diversity in Javorová Valley, which corresponds probably with less visitor intensity, with less anthropogenic impact as well as with less risk of xenobiotics presence in environment.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Achouak, W., Sutra, L., Heulin, T., Meyer, J.M., Fromin, N., Degraeve, S., Christen, R. & Gardan L. (2000). Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov., two root-associated bacteria isolated from Brassica napus and Arabidopsis thaliana. Int. J. Syst. Evol. Microbiol., 50, 9–18. DOI: 10.1099/00207713-50-1-9.

  • Brickler, S.K. & Tunnicliff B. (1980). Water quality analyses of the Colorado River Corridor of Grand Canyon. College of Agriculture Paper 350. Tucson: University of Arizona.

  • Cartwright, J.M. (2015). Average Well Color Development (AWCD) data based on Community Level Physiological Profiling (CLPP) of soil samples from 120 point locations within limestone cedar glades at Stones River National Battlefield near Murfreesboro, Tennessee: U.S. Geological Survey data release. DOI: 10.5066/F7NV9G9C.

  • Firestone, M., Balser, T. & Herman D. (1997). Defining soil quality in terms of microbial community structure. Annual Reports of Research Projects. Berkeley: University of California.

  • Frac, M., Oszust, K. & Lipiec J. (2012). Community level physiological profiles (CLPP) characterization and microbial activity of soil amended with dairy sewage sludge. Sensors, 12, 3253–3268. DOI: 10.3390/s120303253.

  • Frank, J.F. (1997). Milk and dairy products. In M.P. Doyle, L.R. Beuchat & T.J. Montville (Eds.), Food microbiology, fundamentals and frontiers (p. 101). Washington: ASM Press.

  • Garland, J.L. (1997). Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiology Ecology, 24, p. 289–300. DOI: 10.1111/j.1574-6941.1997.tb00446.x.

  • Gomez, E., Garland, J. & Conti M. (2004). Reproducibility in the response of soil bacterial community level physiological profiles from a land use intensification gradient. Appl. Soil Ecol. 26, 21–30. DOI: 10.1016/j.ap-soil.2003.10.007.

  • Hammitt, W.E., Cole, D.N. & Monz Ch. A. (2015). Wildland recreation: Ecology and management. Wiley Blackwell.

  • Ikemoto, S., Suzuki, K., Kaneko, T. & Komagata K. (1980). Characterization of strains of Pseudomonas maltophilia which do not require methionine. Int. J. Syst. Evol. Microbiol., 30, 437–447. DOI: 10.1099/00207713-30-2-437.

  • Koutná, A. & Chovancová B. (Eds.) (2010). Tatry - príroda. Praha: Baset.

  • Lal, S. & Tabacchioni S. (2009). Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian Journal of Microbiology, 49, 2–10. DOI: 10.1007/s12088-009-0008-y.

  • Liddle, M.J. & Scorgie H.R.A. (1980). The effects of recreation on freshwater plants and animals: A review. Biol. Conserv., 17, 183–206. DOI: 10.1016/0006-3207(80)90055-5.

  • Markande, A.R. & Nerurkar A.S. (2016). Bioemulsifier (BE-AM1) produced by Solibacillus silvestris AM1 is a functional amyloid that modulates bacterial cell-surface properties. Biofouling, 32(10), 1153–1162. DOI: 10.1080/08927014.2016.1232716.

  • McSpadden Gardener, B.B. (2004). Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology, 94, 252–1258. DOI: 10.1094/PHYTO.2004.94.11.1252.

  • Montes, M.J., Mercade, E., Bozal, N. & Guinea J. (2004). Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int. J. Syst. Evol. Microbiol., 54, 1521–1526. DOI: 10.1099/ijs.0.63078-0.

  • Newsome, D., Moore, S. & Dowling R. (2013). Natural area tourism: Ecology, impacts, and management. Bristol: Channel View Publications.

  • Potter, L.D., Gosz, J.R. & Carlson C.A. (1984). Forest recreational use, water, and aquatic life: An assessment of research results for land-use managers in the Southern CCRockies and High Plains. Eisenhower Consortium Bulletin No. 6. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station.

  • Reddy, G.S., Matsumoto, G.I., Schumann, P., Stackebrandt, E. & Shivaji S. (2004). “Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov.”. Int. J. Syst. Bacteriol., 54, 713–719. DOI: 10.1099/ijs.0.02827-0.

  • Shida, O., Takagi, H., Kadowaki, K., Nakamura, L.K. & Komagata K. (1997). Emended description of Paenibacillus amylolyticus and description of Paenibacillus illinoisensis sp. nov. and Paenibacillus chibensis sp. nov. Int. J. Syst. Evol. Microbiol., 47(2), 299–306. DOI: 10.1099/00207713-47-2-299.

  • Stock, I., Grueger, T. & Wiedemann B. (2003). Natural antibiotic susceptibility of strains of Serratia marcescens and the S. liquefaciens complex: S. liquefaciens sensu stricto, S. proteamaculans and S. grimesii.” Int. J. Antimicrob. Agents, 22(1), 35–47. DOI: 10.1016/S0924-8579(02)00163-2.

  • Šoltés, R. (1985). Únosná kapacita okolia turistických chodníkov vo Vysokých Tatrách z hľadiska vegetačného krytu. Zborník prác o Tatranskom Národnom Parku, 26, 97–152.

  • Švajda, J. (2009). Contribution for improvement of visitor monitoring in the Tatra National Park. Eco.mont, 1(2), 13–18. DOI: 10.1553/ecomont2s13.

  • Vandžurová, A., Hrašková, I., Júdová, J., Javorský, P. & Pristaš P. (2012). Antibiotic resistance and restriction endonucleases in fecal enterococci of chamois (Rupicapra rupicapra Linnaeus, 1758). Folia Microbiol., 57(4), 355–358. DOI: 10.1007/s12223-012-0141-6.

  • Wolf, A., Fritze, A., Hagemann, M. & Berg G. (2002). Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties. Int. J. Syst. Evol. Microbiol., 5,2: 1937–1944. DOI: 10.1099/00207713-52-6-1937.

OPEN ACCESS

Journal + Issues

Search